求函數(shù)y=f(x)的反函數(shù)的一般步驟是:?

(1)確定原函數(shù)的值域,也就是反函數(shù)的     .?

(2)由y=f(x)的解析式求出     .?

(3)將x、y對換,得反函數(shù)的一般表達(dá)式y=f -1 (x).

(1)定義域。2)x=f -1 (y).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+bx2+cx+d的圖象過點P(0,2),且在點M(-1,f(-1))處的切線方程為6x-y+7=0.

(1)求函數(shù)y=f(x)的解析式;

(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=的圖象在點M(-1,f(x))處的切線方程為x+2y+5=0.求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達(dá)式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆甘肅省高二下學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)設(shè)函數(shù)f(x)=∣2x+1∣-∣x-4∣

(1)解不等式f(x)>2.

(2)求函數(shù)y=f(x)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三第三次模擬考試?yán)頂?shù)B卷 題型:解答題

(本小題滿分12分)

已知函數(shù)

(Ⅰ)若曲線y=f(x)在點P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的單調(diào)區(qū)間;

(Ⅱ)若對于任意成立,試求a的取值范圍;

(Ⅲ)記g(x)=f(x)+x-b(b∈R).當(dāng)a=1時,函數(shù)g(x)在區(qū)間上有兩個零點,求實數(shù)b的取值范圍。

 

 

查看答案和解析>>

同步練習(xí)冊答案