已知相交于A、B兩點(diǎn),過A點(diǎn)作切線交于點(diǎn)E,連接EB并延長交于點(diǎn)C,直線CA交于點(diǎn)D,
  
(1)當(dāng)點(diǎn)D與點(diǎn)A不重合時(shí)(如圖1),證明:ED2=EB·EC;
(2)當(dāng)點(diǎn)D與點(diǎn)A重合時(shí)(如圖2),若BC=2,BE=6,求的直徑長.
(1)證明詳見解析;(2)

試題分析:(1)連接AB,在EA的延長線上取點(diǎn)F,由弦切角定理可得∠FAC=∠ABC,而∠FAC=∠DAE,(對頂角)證得∠ABC=∠DAE,然后內(nèi)接四邊形的性質(zhì)證得∠ABC=∠ADE,即得∠DAE=∠ADE.所以EAED,由切割線定理可得,即.
(2)直線CA與⊙O2只有一個(gè)公共點(diǎn),所以直線CA與⊙O2相切,由弦切角定理知:然后證明,即ACAE分別為⊙O1和⊙O2的直徑.最后根據(jù)切割線定理證得AE的長.
試題解析:(1)連接AB,在EA的延長線上取點(diǎn)F,如圖①所示.
AE是⊙O1的切線,切點(diǎn)為A,
∴∠FAC=∠ABC,.∵∠FAC=∠DAE
∴∠ABC=∠DAE,∵∠ABC是⊙O2內(nèi)接四邊形ABED的外角,
∴∠ABC=∠ADE,∴∠DAE=∠ADE.∴EAED,∵,∴

(2)當(dāng)點(diǎn)D與點(diǎn)A重合時(shí),直線CA與⊙O2只有一個(gè)公共點(diǎn),
所以直線CA與⊙O2相切.如圖②所示,由弦切角定理知:


ACAE分別為⊙O1和⊙O2的直徑.    8分
∴由切割線定理知:EA2BE·CE,而CB=2,BE=6,CE=8
EA2=6×8=48,AE.故⊙O2的直徑為.      10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓O的直徑AB的延長線與弦CD的延長線相交于點(diǎn)P,E為圓O上一點(diǎn),AE=AC,求證:∠PDE=∠POC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)在圓直徑的延長線上,切圓點(diǎn),的平分線交于點(diǎn),交點(diǎn).

(1)求的度數(shù);(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB>·AD,E為AD的中點(diǎn),連結(jié)EC,作EF⊥EC,且EF交AB于F,連結(jié)FC.設(shè)=k,是否存在實(shí)數(shù)k,使△AEF、△ECF、△DCE與△BCF都相似?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,PC與圓O相切于點(diǎn)C,直線PO交圓O于A,B兩點(diǎn),弦CD垂直AB于E,則下面結(jié)論中,錯(cuò)誤的結(jié)論是(  )
A.△BEC∽△DEA
B.∠ACE=∠ACP
C.DE2=OE·EP
D.PC2=PA·AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點(diǎn)E,F(xiàn)分別為線段AB,AD的中點(diǎn),則EF=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,切圓,,,則的長為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖, AB與CD相交于點(diǎn)E, 過E作BC的平行線與AD的延長線相交于點(diǎn)P. 已知, PD =" 2DA" =" 2," 則PE =       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,DE∥BC,DE分別與AB、AC相交于點(diǎn)D、E,若AD=4,DB=2,求DE與BC的長度比.

查看答案和解析>>

同步練習(xí)冊答案