【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程 曲線(xiàn)C1的參數(shù)方程為 (α為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2的極坐標(biāo)方程為ρcos2θ=sinθ.
(1)求曲線(xiàn)C1的極坐標(biāo)方程和曲線(xiàn)C2的直角坐標(biāo)方程;
(2)若射線(xiàn)l:y=kx(x≥0)與曲線(xiàn)C1 , C2的交點(diǎn)分別為A,B(A,B異于原點(diǎn)),當(dāng)斜率k∈(1, ]時(shí),求|OA||OB|的取值范圍.

【答案】
(1)解:曲線(xiàn)C1的直角坐標(biāo)方程為(x﹣1)2+y2=1,即x2+y2﹣2x=0,

∴曲線(xiàn)C1的極坐標(biāo)方程為ρ2﹣2ρcosθ=0,即ρ=2cosθ.

∵曲線(xiàn)C2的極坐標(biāo)方程為ρcos2θ=sinθ,即ρ2cos2θ=ρsinθ,

∴曲線(xiàn)C2的直角坐標(biāo)方程為x2=y


(2)解:設(shè)射線(xiàn)l的傾斜角為α,

則射線(xiàn)l的參數(shù)方程為 (t為參數(shù), ).

把射線(xiàn)l的參數(shù)方程代入曲線(xiàn)C1的普通方程得:t2﹣2tcosα=0,

解得t1=0,t2=2cosα.

∴|OA|=|t2|=2cosα.

把射線(xiàn)l的參數(shù)方程代入曲線(xiàn)C2的普通方程得:cos2αt2=tsinα,

解得t1=0,t2=

∴|OB|=|t2|=

∴|OA||OB|=2cosα =2tanα=2k.

∵k∈(1, ],∴2k∈(2,2 ].

∴|OA||OB|的取值范圍是(2,2 ]


【解析】(1)先將C1的參數(shù)方程化為普通方程,再華為極坐標(biāo)方程,將C2的極坐標(biāo)方程兩邊同乘ρ,根據(jù)極坐標(biāo)與直角坐標(biāo)的對(duì)應(yīng)關(guān)系得出C2的直角坐標(biāo)方程;(2)求出l的參數(shù)方程,分別代入C1 , C2的普通方程,根據(jù)參數(shù)的幾何意義得出|OA|,|OB|,得到|OA||OB|關(guān)于k的函數(shù),根據(jù)k的范圍得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,已知上,且,平面.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:)的分組區(qū)間為,,,將其按從左到右的順序分別編號(hào)為第一組,第二組,......,第五組.如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有人,第三組中沒(méi)有療效的有人,則第三組中有療效的人數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,AD=PD=2,PA=2 ,∠PDC=120°,點(diǎn)E為線(xiàn)段PC的中點(diǎn),點(diǎn)F在線(xiàn)段AB上. (Ⅰ)若AF= ,求證:CD⊥EF;
(Ⅱ)設(shè)平面DEF與平面DPA所成二面角的平面角為θ,試確定點(diǎn)F的位置,使得cosθ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=ex1﹣ax的圖象與x軸相切. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1時(shí),f(x)>m(x﹣1)lnx,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)為調(diào)查來(lái)自南方和北方的同齡大學(xué)生的身高差異,從2016級(jí)的年齡在18~19歲之間的大學(xué)生中隨機(jī)抽取了來(lái)自南方和北方的大學(xué)生各10名,測(cè)量他們的身高,量出的身高如下(單位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根據(jù)抽測(cè)結(jié)果,畫(huà)出莖葉圖,對(duì)來(lái)自南方和北方的大學(xué)生的身高作比較,寫(xiě)出統(tǒng)計(jì)結(jié)論.

(2)設(shè)抽測(cè)的10名南方大學(xué)生的平均身高為cm,將10名南方大學(xué)生的身高依次輸入如圖所示的程序框圖進(jìn)行運(yùn)算,問(wèn)輸出的s大小為多少?并說(shuō)明s的統(tǒng)計(jì)學(xué)意義。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,集合

當(dāng)時(shí),求集合和集合B;

若集合為單元素集,求實(shí)數(shù)m的取值集合;

若集合的元素個(gè)數(shù)為個(gè),求實(shí)數(shù)m的取值集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:12=1,12﹣22=﹣3,12﹣22+32=6,12﹣22+32﹣42=﹣10,…由以上等式推測(cè)到一個(gè)一般的結(jié)論:對(duì)于n∈N* , 12﹣22+32﹣42+…+(﹣1)n+1n2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】張三同學(xué)從每年生日時(shí)對(duì)自己的身高測(cè)量后記錄如表:

附:回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)公式分別為:,

(1)求身高關(guān)于年齡的線(xiàn)性回歸方程;(可能會(huì)用到的數(shù)據(jù):(cm))

(2)利用(1)中的線(xiàn)性回歸方程,分析張三同學(xué)歲起到歲身高的變化情況,如 歲之前都符合這一變化,請(qǐng)預(yù)測(cè)張三同學(xué) 歲時(shí)的身高。

查看答案和解析>>

同步練習(xí)冊(cè)答案