A
分析:先求導(dǎo)數(shù),根據(jù)單調(diào)性研究函數(shù)的極值點,在開區(qū)間(-2,2)上只有一極大值則就是最大值,從而求出a,通過比較兩個端點-2和2的函數(shù)值的大小從而確定出最小值,得到結(jié)論.
解答:由已知,f′(x)=6x2-12x,由6x2-12x≥0得x≥2或x≤0,
因此當x∈[2,+∞),(-∞,0]時f(x)為增函數(shù),在x∈[0,2]時f(x)為減函數(shù),
又因為x∈[-2,2],
所以得,當x∈[-2,0]時f(x)為增函數(shù),
在x∈[0,2]時f(x)為減函數(shù),
所以f(x)max=f(0)=a=3,故有f(x)=2x3-6x2+3
所以f(-2)=-37,f(2)=-5
因為f(-2)=-37<f(2)=-5,所以函數(shù)f(x)的最小值為f(-2)=-37.
從而值域為[-37,3]
故選A
點評:本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,求函數(shù)在閉區(qū)間[a,b]上的最大值與最小值是通過比較函數(shù)在(a,b)內(nèi)所有極值與端點函數(shù)f(a),f(b) 比較而得到的,屬于基礎(chǔ)