設F1,F(xiàn)2是雙曲線
x2
4
-
y2
45
=1
左右兩個焦點,P是雙曲線左支上的點,已知|PF1|、|PF2|、|F1F2|成等差數(shù)列,且公差大于0,則點P的橫坐標為(  )
A、
16
7
B、-
16
7
C、±
16
7
D、2
分析:根據(jù)雙曲線的第一定義可知|PF2|-|PF1|=4,再由|PF1|、|PF2|、|F1F2|成等差數(shù)列可知|PF1|+|F1F2|=2|PF2|,根據(jù)這兩個方程聯(lián)立方程組可得到|PF1|和|PF2|的值,再根據(jù)|PF1|=-(ex-a)=6及e和a的值能夠出點P的橫坐標.
解答:解:由|PF1|+|F1F2|=2|PF2|,|PF2|-|PF1|=4,
得|PF1|=6,|PF2|=10,由|PF1|=-(ex-a)=6,
-(
7
2
x+2)=6
,得x=-
16
7

故選B.
點評:本題考查雙曲線的第一定義,同時把等差數(shù)列融入其中,解題時要注重解題方法的積累.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個焦點,點P在雙曲線上,若
PF1
PF2
=0 且|
PF1
||
PF2
|=2ac(c=
a2+b2
),則雙曲線的離心率為( 。
A、
1+
5
2
B、
1+
3
2
C、2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•寶山區(qū)模擬)雙曲線C:
x2
a2
-
y2
b2
=1
上一點(2,
3
)
到左,右兩焦點距離的差為2.
(1)求雙曲線的方程;
(2)設F1,F(xiàn)2是雙曲線的左右焦點,P是雙曲線上的點,若|PF1|+|PF2|=6,求△PF1F2的面積;
(3)過(-2,0)作直線l交雙曲線C于A,B兩點,若
OP
=
OA
+
OB
,是否存在這樣的直線l,使OAPB為矩形?若存在,求出l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2是雙曲線x2-
y224
=1
的兩個焦點,是雙曲線上的一點,且3|PF1|=4|PF2|,則△PF1F2的面積等于
24
24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•許昌三模)設F1,F(xiàn)2是雙曲線
x2
3
-y2=1
的兩個焦點,P在雙曲線上,當△F1PF2的面積為2時,
PF1
PF2
的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右兩個焦點,若雙曲線右支上存在一點P,使(
OP
+
OF2
)•
F2P
=0
(O為坐標原點),且tan∠PF2F1=2,則雙曲線的離心率為( 。

查看答案和解析>>

同步練習冊答案