已知橢圓
x2
4
+y2
=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,當(dāng)△F1PF2的面積為1時(shí),
PF1
PF2
=(  )
A、0
B、1
C、2
D、
1
2
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用橢圓的定義、余弦定理、三角形的面積公式,即可得出結(jié)論.
解答: 解:由已知得a=2,設(shè)|PF1|=m,|PF2|=n,∠F2PF1
由橢圓的定義可知m+n=4,平方可得m2+n2+2mn=4
∵m2+n2-2mncosα=12,
1
2
mnsinα=1
∴α=90°,
PF1
PF2
=0.
故選:A.
點(diǎn)評(píng):本題考查橢圓的定義、余弦定理、三角形的面積公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖(1)是反應(yīng)某公共汽車線路收支差額(即營(yíng)運(yùn)所得票價(jià)收入與付出成本的差)y與乘客兩x之間關(guān)系的圖象.由于目前該條公交線虧損,公司有關(guān)人員提出了兩種調(diào)整的建議,如圖(2)(3)的實(shí)線(虛線為原參考線)所示.給出下列說(shuō)法:
①圖(2)的建議是:提高成本,并提高票價(jià);
②圖(2)的建議是:降低成本,并保持票價(jià)不變;
③圖(3)的建議是:提高票價(jià),并保持成本不變;
④圖(3)的建議是:提高票價(jià),并降低成本.
其中所有說(shuō)法正確的是( 。
A、①③B、②③C、②④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos(-
43
6
π)的值是(  )
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
2
+α)=
2
5
,則cosα的值為( 。
A、
2
5
B、-
2
5
C、±
21
5
D、±
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x∈R,x2+x≥2”的否定是( 。
A、?x0∈R,x2+x≤2
B、?x0∈R,x2+x<2
C、?x∈R,x2+x≤2
D、?x∈R,x2+x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x-1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

M=(-1,1),N=[0,2),則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點(diǎn)分別是F1,F(xiàn)2,離心率e=
2
2
,P為橢圓上任一點(diǎn),且△PF1F2的最大面積為1.
(1)求橢圓C的方程;
(2)設(shè)斜率為
2
2
的直線l交橢圓C于A,B兩點(diǎn),且以AB為直徑的圓恒過原點(diǎn)O,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)四面體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案