【題目】已知函數(shù)在點(diǎn)處的切線與直線平行,且,其中.
(Ⅰ)求的值,并求出函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù),對(duì)于正實(shí)數(shù),若,使得成立,求的最大值.
【答案】(Ⅰ),的單調(diào)遞增區(qū)間為; (Ⅱ).
【解析】試題分析:(Ⅰ)求導(dǎo)得斜率,列方程,求解即可
(Ⅱ),使得成立等價(jià)于在區(qū)間上有解,即在區(qū)間上有解,轉(zhuǎn)化為在區(qū)間上有解,構(gòu)造函數(shù),求導(dǎo)利用單調(diào)性求解即可.
試題解析:
(Ⅰ)對(duì)求導(dǎo),得.若在點(diǎn)處的切線與直線平行,則,又,求得.
即,此時(shí),定義域?yàn)?/span>,
對(duì)求導(dǎo),得.
由,求得,即的單調(diào)遞增區(qū)間為.
(Ⅱ)由(Ⅰ)知,,使得成立等價(jià)于在區(qū)間上有解,即在區(qū)間上有解.
因?yàn)楫?dāng)時(shí),(不同時(shí)取等號(hào)),所以,
于是在區(qū)間上有解可轉(zhuǎn)化為在區(qū)間上有解.
記,
則.
因?yàn)?/span>,則,
所以,即在上單調(diào)遞增,
所以,
可知.
于是實(shí)數(shù)的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市主辦的科技知識(shí)競賽的學(xué)生成績中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組,第一組;第二組;…;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)求成績在區(qū)間內(nèi)的學(xué)生人數(shù);
(2)從成績大于等于80分的學(xué)生中隨機(jī)選取2名,求至少有1名學(xué)生的成績在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)當(dāng)時(shí),若對(duì)任意互不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍;
(3)判斷函數(shù)在上的零點(diǎn)的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行的“國際馬拉松賽”,舉辦單位在活動(dòng)推介晚會(huì)上進(jìn)行嘉賓現(xiàn)場抽獎(jiǎng)活動(dòng),抽獎(jiǎng)盒中裝有6個(gè)大小相同的小球,分別印有“快樂馬拉松”和“美麗綠城行”兩種標(biāo)志,搖勻后,參加者每次從盒中同時(shí)抽取兩個(gè)小球(取出后不再放回),若抽到的兩個(gè)球都印有“快樂馬拉松”標(biāo)志即可獲獎(jiǎng).并停止取球;否則繼續(xù)抽取,第一次取球就抽中獲一等獎(jiǎng),第二次取球抽中獲二等獎(jiǎng),第三次取球抽中獲三等獎(jiǎng),沒有抽中不獲獎(jiǎng).活動(dòng)開始后,一位參賽者問:“盒中有幾個(gè)印有‘快樂馬拉松’的小球?”主持人說:“我只知道第一次從盒中同時(shí)抽兩球,不都是‘美麗綠城行’標(biāo)志的概率是
(1)求盒中印有“快樂馬拉松”小球的個(gè)數(shù);
(2)若用表示這位參加者抽取的次數(shù),求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(λx+1)ln x-x+1.
(1)若λ=0,求f(x)的最大值;
(2)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直,證明:>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值及對(duì)應(yīng)的點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(Ⅱ)若函數(shù)的圖象與直線相切,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場調(diào)研,某超市一種玩具在過去一個(gè)月(按30天)的銷售量(件)與價(jià)格(元)均為時(shí)間(天)的函數(shù),且銷售量近似滿足,價(jià)格近似滿足。
(1)試寫出該種玩具的日銷售額與時(shí)間(, )的函數(shù)關(guān)系式;
(2)求該種玩具的日銷售額的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com