lnx+2x |
x2 |
π |
3 |
1 |
2 |
π |
3 |
1 |
2 |
π |
3 |
1 |
2 |
lnx |
x2 |
2x |
x2 |
| ||
x4 |
2x•ln2•x2-2x•2x |
x4 |
(1-2lnx)x+(ln2•x2-2x)•2x |
x4 |
1-2lnx+(ln2•x-2)•2x |
x3 |
π |
3 |
1 |
2 |
π |
3 |
| ||
2 |
2 | ||
|
1 |
2 |
2 | ||
|
π |
3 |
3 |
2π |
3 |
| ||
2 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
4 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
定義在R上的奇函數(shù)f(x)有最小正周期為2,且xÎ(0,1)時(shí),f(x)=.
(1)求f(x)在[-1,1]上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性;
(3)當(dāng)l為何值時(shí),方程f(x)=l在xÎ[-1,1]上有實(shí)數(shù)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044
(1)求f(x)在[-1,1]上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性;
(3)當(dāng)l為何值時(shí),方程f(x)=l在xÎ[-1,1]上有實(shí)數(shù)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)若|f(0)|=|f(1)|=|f(-1)|=1,試求f(x)的解析式;
(2)令g(x)=2ax+b,若g(1)=0,又f(x)的圖象在x軸上截得的弦的長(zhǎng)度為l,且0<l≤2,試確定c-b的符號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)若|f(0)|=|f(1)|=|f(-1)|=1,試求f(x)的解析式;
(2)令g(x)=2ax+b,若g(1)=0,又f(x)的圖象在x軸上截得的弦的長(zhǎng)度為l,且0<l≤2,試確定c-b的符號(hào).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com