(14分) (理科)如圖,梯形ABCD的底邊AB在y軸上,原點O為AB的中點,
M為CD的中點.
(1)求點M的軌跡方程;
(2)過M作AB的垂線,垂足為N,若存在正常數(shù),
使,且P點到A、B 的距離和為定值,
求點P的軌跡E的方程;
(3)過的直線與軌跡E交于P、Q兩點,且,求此直線方程.
(14分) (理科)解:(1)設(shè)點M的坐標為M(x, y)(x≠0),則
又 由AC⊥BD有,
即,∴x2+y2=1(x≠0). ……………………… 4分
(2)設(shè)P(x, y),則,代入M的軌跡方程有
即,∴P的軌跡方程為橢圓(除去長軸的兩個端點).
要P到A、B的距離之和為定值,則以A、B為焦點,故
∴ 從而所求P的軌跡方程為9x2+y2=1(x≠0). ………………… 8分
(3)易知l的斜率存在,設(shè)方程為
聯(lián)立9x2+y2=1,有
設(shè)P(x1, y1), Q(x2, y2),則.
∵,而
∴. 整理,得
∴ 即所求l的方程為……………………… 14分
科目:高中數(shù)學 來源:2014屆江西南昌八一、洪都、麻丘中學高二上期中數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)(理科)已知橢圓,過焦點且垂直于長軸的弦長為1,且焦點與短軸兩端點構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,交直線于點,且,,
求證:為定值,并計算出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市黃浦區(qū)高三上學期期終基礎(chǔ)學業(yè)測評理科數(shù)學試卷 題型:解答題
(本題滿分14分)本題共有2個小題,第1小題滿分7分,第2小題滿分7分.
(理科)已知四棱錐的底面是直角梯形, ,,
側(cè)面為正三角形,,.如圖4所示.
(1) 證明: 平面;
(2) 求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年四川省高二下學期5月月考數(shù)學試題 題型:解答題
(本題滿分14分理科做)已知函數(shù)的圖象經(jīng)過點和,記
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),若,求的最小值;
(Ⅲ)求使不等式對一切均成立的最大實數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年四川省成都市高二3月月考數(shù)學試卷 題型:填空題
(文科做)(本題滿分14分)如圖,在長方體
ABCD—A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)證明:D1E⊥A1D;
(2)當E為AB的中點時,求點E到面ACD1的距離;
(3)AE等于何值時,二面角D1—EC-D的大小為.
(理科做)(本題滿分14分)
如圖,在直三棱柱ABC – A1B1C1中,∠ACB = 90°,CB = 1,
CA =,AA1 =,M為側(cè)棱CC1上一點,AM⊥BA1.
(Ⅰ)求證:AM⊥平面A1BC;
(Ⅱ)求二面角B – AM – C的大小;
(Ⅲ)求點C到平面ABM的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com