精英家教網 > 高中數學 > 題目詳情
已知橢圓(a>b>0)的焦距為,離心率為
(Ⅰ)求橢圓方程;
(Ⅱ)設過橢圓頂點B(0,b),斜率為k的直線交橢圓于另一點D,交x軸于點E,且|BD|,
|BE|,|DE|成等比數列,求k2的值.
解:(Ⅰ)由已知 , .
解得 ,
所以b2=a2﹣c2=1,
橢圓的方程為 
(Ⅱ)由(Ⅰ)得過B點的直線為y=kx+1,
由 得(4k2+1)x2+8kx=0,
所以 ,所以 ,
依題意k≠0, 
因為|BD|,|BE|,|DE|成等比數列,
所以|BE|2=|BD||DE|,
所以b2=(1﹣yD)|yD|,
即(1﹣yD)|yD|=1,
當yD>0時,yD2﹣yD+1=0,無解,
當yD<0時,yD2﹣yD﹣1=0,解得 ,
所以 ,
解得 ,
所以,當|BD|,|BE|,|DE|成等比數列時, .  
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(-c,0)和(c,0),若c是a、m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中數學 來源:2014屆廣東省、陽東一中高二上聯考文數試卷(解析版) 題型:解答題

(本題滿分14分)

如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數學(天津卷解析版) 題型:解答題

已知橢圓(a>b>0),點在橢圓上。

(I)求橢圓的離心率。

(II)設A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點定位】本小題主要考查橢圓的標準方程和幾何性質、直線的方程、平面內兩點間距離公式等基礎知識. 考查用代數方法研究圓錐曲線的性質,以及數形結合的數學思想方法.考查運算求解能力、綜合分析和解決問題的能力.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖北省天門市高三天5月模擬文科數學試題 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經過點M(0,1),與橢圓C交于不同兩點A、B.

   (1)求橢圓C的標準方程;

   (2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010年河北省邯鄲市高二上學期期末考試數學理卷 題型:解答題

(本小題滿分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數的零點.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,,求k的值.

 

查看答案和解析>>

同步練習冊答案