【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

總計

男同學(xué)

女同學(xué)

總計

(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?

(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在分鐘,乙每次解答一道幾何題所用的時間在分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

(3)現(xiàn)從選擇做幾何的名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

【答案】1) 有的把握認(rèn)為視覺和空間能力與性別有關(guān);2;3)詳見解析.

【解析】

試題分析:(1)根據(jù)所給列聯(lián)表,計算的觀測值,和附表和公式進行比較;(2)基本事件滿足的區(qū)域為,求解其中的面積比值,就是所求概率;(3X可能取值為0,1,2,根據(jù)超幾何分布求其概率,并列分布列和數(shù)學(xué)期望.

試題解析:(1)由表中數(shù)據(jù)得的觀測值,

所以根據(jù)統(tǒng)計有的把握認(rèn)為視覺和空間能力與性別有關(guān).

2)設(shè)甲、乙解答一道幾何題的時間分別為分鐘,

則基本事件滿足的區(qū)域為(如圖所示)

設(shè)事件乙比甲先做完此道題,則滿足的區(qū)域為

,即乙比甲先解答完的概率為.

3X可能取值為0,1,2

,,

所以X的分布列為

X

0

1

2

P




.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點,直線.

(1)求與圓相切,且與直線垂直的直線方程;

2)在直線上(為坐標(biāo)原點),存在定點(不同于點),滿足:對于圓上的任一點,都有為一常數(shù),試求出所有滿足條件的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,右頂點是,離心率為.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(不同于點),若,求證:直線過定點,并求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖象先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).

1)求的解析式,并求的對稱中心;

2)若關(guān)于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,ABAD1AA12,點PDD1的中點,點MBB1的中點.

1)求證:PB1⊥平面PAC;

2)求直線CM與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有個名句運籌帷幄之中,決勝千里之外”.其中的原意是指《孫 子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排 列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如2268用算籌表示就是=|||||.執(zhí)行如圖所示程序框 圖,若輸人的x=1, y = 2,則輸出的S用算籌表示為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面PAC⊥平面ABC是以AC為斜邊的等腰直角三角形,EF,O分別為PAPB,AC的中點,.

1)設(shè)GOC的中點,證明:∥平面;

2)證明:在內(nèi)存在一點M,使FM⊥平面BOE,求點MOA,OB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值點;

(2)若,函數(shù)有兩個極值點,,且,求的最小值。

查看答案和解析>>

同步練習(xí)冊答案