【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρsin(θ+ )=2 (Ⅰ)直接寫出C1的普通方程和極坐標方程,直接寫出C2的普通方程;
(Ⅱ)點A在C1上,點B在C2上,求|AB|的最小值.
【答案】解:(Ⅰ)由 ,得 ,兩式平方作和得:(x+2)2+y2=4, C1的極坐標方程為ρ=﹣4cosθ,
由ρsin(θ+ )=2 ,得 ,
即 ,
得x+y﹣4=0.
(Ⅱ)C1是以點(﹣2,0)為圓心,半徑為2的圓,C2是直線.
圓心到直線C2的距離為 >2,直線和圓相離.
∴|AB|的最小值為
【解析】(Ⅰ)把圓C1的參數(shù)方程變形,兩式平方作和可得普通方程,進一步求得極坐標方程,展開兩角和的正弦,結(jié)合x=ρcosθ,y=ρsinθ可得C2的普通方程;(Ⅱ)由點到直線的距離公式求出圓心到直線的距離,可得直線和圓相離,由點到直線的距離減去圓的半徑求得|AB|的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】拋物線y2=2px(p>0)的焦點為F,準線為l,A,B是拋物線上的兩個動點,且滿足∠AFB= .設(shè)線段AB的中點M在l上的投影為N,則 的最大值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于下列四個命題
p1:x0∈(0,+∞),( )x0<( )x0
p2:x0∈(0,1), x0> x0
p3:x∈(0,+∞),( )x> x
p4:x∈(0, ),( )x< x.
其中的真命題是( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)當x>0時, 恒成立,求整數(shù)k的最大值;
(3)試證明:(1+12)(1+23)(1+34)…(1+n(n+1))>e2n﹣3 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,M是邊BC的中點,tan∠BAM= ,cos∠AMC=﹣ (Ⅰ)求角B的大小;
(Ⅱ)若角∠BAC= ,BC邊上的中線AM的長為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個交點的距離為π,若f(x)>1對x∈(﹣ , )恒成立,則φ的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax+b(a,b∈R)在x=ln2處的切線方程為y=x﹣2ln2. (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若k為差數(shù),當x>0時,(k﹣x)f'(x)<x+1恒成立,求k的最大值(其中f'(x)為f(x)的導函數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)求f(x)單調(diào)遞增區(qū)間;
(2)△ABC中,角A,B,C的對邊a,b,c滿足 ,求f(A)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com