精英家教網 > 高中數學 > 題目詳情
若函數f(x)滿足f(n)=
2
 ,n=1
3f(n-1)
 ,n≥2
,則f(3)=______.
∵3>2,∴f(3)=3f(2);
∵2=2,∴f(2)=3f(1);
∵f(1)=2,∴f(3)=3×3×2=18.
故答案為18.
練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質量檢測數學試卷 (理科)(解析版) 題型:選擇題

已知定義域為R的函數f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數學 來源:2012-2013學年河南省洛陽一中高三(上)期中數學考前選擇題強化訓練(解析版) 題型:選擇題

已知定義域為R的函數f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質量檢測數學試卷 (文科)(解析版) 題型:選擇題

已知定義域為R的函數f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖南省湘西州邊城高級中學高三(上)月考數學試卷(解析版) 題型:選擇題

已知定義域為R的函數f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖南省湘西州古丈縣補習學校高三(上)第一次月考數學試卷(理科)(解析版) 題型:選擇題

已知定義域為R的函數f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步練習冊答案