若函數(shù)滿足①函數(shù)的圖象關(guān)于對稱;②在上有大于零的最大值;③函數(shù)的圖象過點;④,試寫出一組符合要求的的值 

 

【答案】

滿足,皆可

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3,},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{0,
3
3
,1
}的函數(shù)圖象向下平移2個單位,得到的新函數(shù)的解析式是
y=
3
3
x-1
y=
3
3
x-1
; (答案寫在答卷上)
(2)在(1)中,平移前后的兩個函數(shù)分別與y軸交于A、B兩點,與直線x=
3
分別交于D、C兩點,在平面直角坐標系中畫出圖形,判斷以點A、B、C、D為頂點的四邊形形狀,并說明理由;
(3)若(2)中的四邊形與“特征數(shù)”是{1,-2b,b2+
1
2
}的函數(shù)圖象的有交點,求滿足條件的實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)一模)將奇函數(shù)的圖象關(guān)于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(a,b)成中心對稱.
②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結(jié)論完成下列各題:
(1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數(shù),試問函數(shù)f(x)=
x+m
x-1
的圖象是否關(guān)于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數(shù)f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的圖象關(guān)于點(
2
3
,f(
2
3
))
成中心對稱,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期第三次月考考試數(shù)學(xué)理卷 題型:填空題

若函數(shù)滿足①函數(shù)的圖象關(guān)于對稱;②在上有大于零的最大值;③函數(shù)的圖象過點;④,試寫出一組符合要求的的值         .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,若存在x0∈D,使得y0=f(x0)=x0,則稱以(x0,y0)為坐標的點為函數(shù)圖象上的不動點.

(1)若函數(shù)f(x)=的圖象上有兩個關(guān)于原點對稱的不動點,求a、b滿足的條件;

(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個不動點分別為A、A′,P為函數(shù)f(x)的圖象上的另一點,且其縱坐標yP>3,求點P到直線AA′距離的最小值及取得最小值時點P的坐標.

(3)命題“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個不動點,則不動點有奇數(shù)個”是否正確?若正確,試給予證明,并舉出一例;若不正確,試舉一反例說明.

查看答案和解析>>

同步練習(xí)冊答案