設(shè)函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的極值;
(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性.
(Ⅲ)若對任意及任意,恒有 成立,求實數(shù)的取值范圍.
(1)無極大值.
(2)當(dāng)時,在上是減函數(shù);
當(dāng)時,在和單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時,在和單調(diào)遞減,在上單調(diào)遞增;
(3)
【解析】
試題分析:解:(Ⅰ)函數(shù)的定義域為.(2分)
當(dāng)時, (4分)
當(dāng)時,當(dāng)時,
無極大值.(6分)
(Ⅱ)
(7分)
當(dāng),即時, 在定義域上是減函數(shù);
當(dāng),即時,令得或
令得
當(dāng),即時,令得或
令得
綜上,當(dāng)時,在上是減函數(shù);
當(dāng)時,在和單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時,在和單調(diào)遞減,在上單調(diào)遞增;
(10分)
(Ⅲ)由(Ⅱ)知,當(dāng)時,在上單減,
是最大值,是最小值.
, (12分)
,而經(jīng)整理得,
由得,所以 (15分)
考點:導(dǎo)數(shù)的運用
點評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用,利用導(dǎo)數(shù)判定單調(diào)性以及極值和最值,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)
(1)當(dāng)時,在上恒成立,求實數(shù)的取值范圍;
(2)當(dāng)時,若函數(shù)在上恰有兩個不同的零點,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(海南) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(Ⅰ)若當(dāng)時取得極值,求a的值,并討論的單調(diào)性;
(Ⅱ)若存在極值,求a的取值范圍,并證明所有極值之和大于.
請考生在第22、23、24題中任選一題做答,如果多做,則按所做的第一題記分。做答時請寫清題號。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京高考模擬系列試卷理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)令<≤,其圖像上任意一點P處切線的斜率≤恒成立,求實數(shù)的取值范圍;
(III)當(dāng)時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年寧夏高三第五次月考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
(1)當(dāng)時,求的最大值;
(2)令,(0≤3),其圖象上任意一點處切線的斜率≤恒成立,求實數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省東北育才學(xué)校高二下學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的定義域;
(Ⅱ)若函數(shù)的定義域為,試求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com