已知點(diǎn)(0,-
5
)是中心在原點(diǎn),長軸在x軸上的橢圓的一個(gè)頂點(diǎn),離心率為
6
6
,橢圓的左右焦點(diǎn)分別為F1和F2
(Ⅰ)求橢圓方程;
(Ⅱ)點(diǎn)M在橢圓上,求△MF1F2面積的最大值.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1
,由已知得b=
5
,
c
a
=
6
6
,由此能求出橢圓方程.
(Ⅱ)令M(x1,y1),則S△MF1F2=
1
2
•2•
|y1|=|y1|,由此能求出當(dāng)y1
5
時(shí),S△MF1F2的最大值為
5
解答: 解:(Ⅰ)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1

∵橢圓的一個(gè)頂點(diǎn)(0,-
5
),離心率為
6
6
,
∴b=
5
c
a
=
6
6
,
解得a=
6
,c=1,
∴橢圓方程為
x2
6
+
y2
5
=1

(Ⅱ)令M(x1,y1),則S△MF1F2=
1
2
•2•
|y1|=|y1|,
∵-
5
≤y1
5

∴|y1|的最大值為
5
,
∴當(dāng)y1
5
時(shí),S△MF1F2的最大值為
5
點(diǎn)評:本題考查了橢圓方程的求法以及橢圓的性質(zhì),利用a、b、c、e幾何意義和a2=b2+c2求出a和b的值,根據(jù)橢圓上點(diǎn)的坐標(biāo)范圍求出相應(yīng)三角形的面積最值,考查了分析問題和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

今年3月1日,重慶某中學(xué)50位學(xué)生參加了“北約聯(lián)盟”的自主招生考試.這50位同學(xué)的數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[60,70),[70,80),[80,90),[90,100),[100,110),[110,120].
(Ⅰ)求圖中a的值;
(Ⅱ)從成績不低于100分的學(xué)生中隨機(jī)選取2人,該2人中成績在110分以上(含110分)的人數(shù)記為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿足:a3=4,a4+a5=24.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=
an
n•(n+1)•2n
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=1,a2=4,a3=9,an=an-1+an-2-an-3,n=4,5,…,則a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2asin2x+4cos2x-3,若對x∈R均有f(x)≥f(-
π
3
)恒成立.
(Ⅰ)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,且a=2,f(A)=1,求△ABC的內(nèi)切圓半徑r的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的算法中,輸出的S的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖所示,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一根蠟燭長20cm,點(diǎn)燃后每小時(shí)燃燒5cm,則燃燒剩下的高度h(cm)與燃燒時(shí)間t(小時(shí))的函數(shù)關(guān)系用圖象表示為( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案