精英家教網 > 高中數學 > 題目詳情

已知點與點關于直線對稱,則直線的方程為(    ).

A.    B.   C.   D.


解析:

線段的中點為,直線的斜率為,所以直線

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xoy中,已知直線l:8x+6y+1=0,圓C1:x2+y2+8x-2y+13=0,圓C2:x2+y2+8tx-8y+16t+12=0.
(1)當t=-1時,試判斷圓C1與圓C2的位置關系,并說明理由;
(2)若圓C1與圓C2關于直線l對稱,求t的值;
(3)在(2)的條件下,若P(a,b)為平面上的點,是否存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1與圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,若存在,求點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l過點(1,
178
)且它的一個方向向量為(4,-7),又圓C1:(x+3)2+(y-1)2=4與圓C2關于直線l對稱.
(Ⅰ)求直線l和圓C2的方程;
(Ⅱ)設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試示所有滿足條件的點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知曲線C上任意一點到定點A( 1,0 )與定直線x = 4的距離之和等于5。對于給定的點B( b,0 ),在曲線上恰有三對不同的點關于點B對稱,求b的取值范圍。                           

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分15分)已知二次函數的圖象經過點,是偶函數,函數的圖象與直線相切,且切點位于第一象限.

(Ⅰ)求函數的解析式;

(Ⅱ)若對一切,不等式恒成立,求實數的取值范圍;

(Ⅲ)若關于x的方程有三個不同的實數解,求實數k的值.

查看答案和解析>>

科目:高中數學 來源:2010年福建省高三模擬考試數學(理科)試題 題型:解答題

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4-4:坐標系與參數方程

 以直角坐標系的原點為極點,軸的正半軸為極軸。已知點的直角坐標為(1,-5),點的極坐標為若直線過點,且傾斜角為,圓為圓心、為半徑。

(I)求直線的參數方程和圓的極坐標方程;

(II)試判定直線和圓的位置關系.

(2)(本小題滿分7分)選修4-4:矩陣與變換

把曲線先進行橫坐標縮為原來的一半,縱坐標保持不變的伸縮變換,再做關于軸的反射變換變?yōu)榍,求曲線的方程.

(3)(本小題滿分7分)選修4-5:不等式選講

關于的一元二次方程對任意無實根,求實數的取值范圍.

 

查看答案和解析>>

同步練習冊答案