無(wú)論為任何實(shí)數(shù),直線與雙曲線恒有公共點(diǎn).
(1)求雙曲線的離心率的取值范圍;
(2)若直線過雙曲線的右焦點(diǎn),與雙曲線交于兩點(diǎn),并且滿足,求雙曲線的方程.
(1);(2).
解析試題分析:(1)欲求雙曲線的離心率的取值范圍,只需找到, 的齊次不等式,根據(jù)直線:與雙曲線恒有公共點(diǎn),聯(lián)立方程后,方程組必有解,成立,即可得到含,的齊次不等式,離心率的取值范圍可得.
(2)先設(shè)直線的方程,與雙曲線方程聯(lián)立,求出,,代入,化簡(jiǎn),即可求出,代入
即可.
(1)聯(lián)立,得,
即
當(dāng)時(shí),,直線與雙曲線無(wú)交點(diǎn),矛盾
所以.所以.
因?yàn)橹本與雙曲線恒有交點(diǎn),恒成立
即.所以,所以,.
(2),直線:,
,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/32/c/s5qvj1.png" style="vertical-align:middle;" />,所以,整理得,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/45/e/1ly2u2.png" style="vertical-align:middle;" />,所以,,所以
所以雙曲線.
考點(diǎn):圓錐曲線的綜合;雙曲線的標(biāo)準(zhǔn)方程;雙曲線的簡(jiǎn)單性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)分別是橢圓的左,右焦點(diǎn).
(1)若是橢圓在第一象限上一點(diǎn),且,求點(diǎn)坐標(biāo);(5分)
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同兩點(diǎn),且為銳角(其中為原點(diǎn)),求直線的斜率的取值范圍.(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的兩個(gè)端點(diǎn)的連線構(gòu)成一正方形.(12分)
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點(diǎn),若線段的垂直平分線經(jīng)過點(diǎn),求
(為原點(diǎn))面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為,且過點(diǎn)(4,-).
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:·=0;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:()的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)).點(diǎn)在橢圓上,且,直線與軸、軸分別交于兩點(diǎn).
(i)設(shè)直線的斜率分別為,證明存在常數(shù)使得,并求出的值;
(ii)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓()的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn),經(jīng)過原點(diǎn)的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)(2011•陜西)設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com