【題目】已知整數(shù)對(duì)排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(14),(2,3),(3,2),(4,1),(1,5),(24......則第60個(gè)整數(shù)對(duì)是(

A.(5,7)B.(115)C.(7,5)D.(511)

【答案】A

【解析】

把這些整數(shù)對(duì)看成點(diǎn)的坐標(biāo),可以發(fā)現(xiàn)點(diǎn)的橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,進(jìn)而利用這個(gè)關(guān)系,結(jié)合等差數(shù)列前項(xiàng)和公式直接求解即可.

把這些整數(shù)對(duì)看成點(diǎn)的坐標(biāo),(1,1)它的橫坐標(biāo)和縱坐標(biāo)之和為2;

1,2),(2,1),它們的橫坐標(biāo)和縱坐標(biāo)之和為3;

1,3),(22),(31),它們的橫坐標(biāo)和縱坐標(biāo)之和為4;

1,4),(23),(32),(4,1),它們的橫坐標(biāo)和縱坐標(biāo)之和為5;

因?yàn)?/span>,

所以第60個(gè)整數(shù)對(duì),它的橫坐標(biāo)和縱坐標(biāo)之和為12,它是第5個(gè)這樣的數(shù),它前四個(gè)數(shù)為:

(1,11),(2,10),(3,9),(4,8),所以第五個(gè)數(shù)為(5,7).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)今年1月,2月,3月患某種傳染病的人數(shù)分別為42,4852.為了預(yù)測(cè)以后各月的患病人數(shù),甲選擇了模型,乙選擇了模型,其中為患病人數(shù),為月份數(shù),ab,c,pq,r都是常數(shù).結(jié)果4月,5月,6月份的患病人數(shù)分別為54,5758.

1)求a,b,c,pq,r的值;

2)你認(rèn)為誰(shuí)選擇的模型好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若函數(shù)有兩個(gè)極值點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)a=1時(shí),寫(xiě)出的單調(diào)遞增區(qū)間(不需寫(xiě)出推證過(guò)程);

(Ⅱ)當(dāng)x>0時(shí),若直線y=4與函數(shù)的圖像交于A,B兩點(diǎn),記,求的最大值;

(Ⅲ)若關(guān)于x的方程在區(qū)間(1,2)上有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),,直線的參數(shù)方程為 為參數(shù)).

1)若相交,求實(shí)數(shù)的取值范圍;

2)若,設(shè)點(diǎn)在曲線上,求點(diǎn)的距離的最大值,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)數(shù)函數(shù))和指數(shù)函數(shù))互為反函數(shù).已知函數(shù),其反函數(shù)為

1)若函數(shù)定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

2)若為定義在上的奇函數(shù),且時(shí),.求的解析式.

3)定義在上的函數(shù),如果滿足:對(duì)任意的,存在常數(shù),都有成立,則稱函數(shù)上的有界函數(shù),其中為函數(shù)的上界.若函數(shù),當(dāng)時(shí),探究函數(shù)上是否存在上界,若存在求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,的中點(diǎn).

1)求證:平面;

2)求證:平面平面.(只需在下面橫線上填寫(xiě)給出的如下結(jié)論的序號(hào):①平面,②平面,③,④,⑤

證明:(1)設(shè),連接.因?yàn)榈酌?/span>是正方形,所以的中點(diǎn),又的中點(diǎn),所以_________.因?yàn)?/span>平面,____________,所以平面.

2)因?yàn)?/span>平面平面,所以___________,因?yàn)榈酌?/span>是正方形,所以_______,又因?yàn)?/span>平面平面,所以_________.平面,所以平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;

(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)?/span>[50,90)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, .

(1)求函數(shù)的最小值;

(2)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案