給定下列命題:
①半徑為2,圓心角的弧度數(shù)為的扇形的面積為
②若a、β為銳角,,
③若A、B是△ABC的兩個(gè)內(nèi)角,且sinA<sinB,則BC<AC;
④若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng),且a2+b2-c2<0,則△ABC一定是鈍角三角形.
其中真命題的序號(hào)是   
【答案】分析:根據(jù)扇形的面積公式得s==1故①錯(cuò),先得α+2β=(α+β)+β,則tan[(α+β)+β],tan(α+β)=求出其正切值,因?yàn)棣痢ⅵ聻殇J角,得到α+2β即可;根據(jù)正弦定理得,因?yàn)閟inA<sinB,得到BC<AC;根據(jù)余弦定理得cosC=,因?yàn)閍2+b2-c2<0,而2ab>0,得到cosC<0,因?yàn)椤螩∈(0,π)所以∠C為鈍角.
解答:解:①由扇形的面積公式s==1故錯(cuò)誤;②因?yàn)棣?2β=(α+β)+β,則tan[(α+β)+β]==1,又因?yàn)棣痢ⅵ聻殇J角,所以
α+2β=,故正確;③根據(jù)正弦定理得,因?yàn)閟inA<sinB,得到BC<AC故正確;④根據(jù)余弦定理得cosC=,因?yàn)閍2+b2-c2<0,而2ab>0,得到cosC<0,因?yàn)椤螩∈(0,π)所以∠C為鈍角故正確.
故答案為②③④
點(diǎn)評(píng):考查學(xué)生掌握扇形面積公式、兩角和的正切函數(shù)公式的能力,以及正弦余弦定理的運(yùn)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
①半徑為2,圓心角的弧度數(shù)為
1
2
的扇形的面積為
1
2
;
②若a、β為銳角,tan(α+β)=
1
3
tanβ=
1
2
α+2β=
π
4
;
③若A、B是△ABC的兩個(gè)內(nèi)角,且sinA<sinB,則BC<AC;
④若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng),且a2+b2-c2<0,則△ABC一定是鈍角三角形.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆安徽省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

給定下列命題:

①半徑為2,圓心角的弧度數(shù)為的扇形的面積為;

②若為銳角,,則

③若、是△的兩個(gè)內(nèi)角,且,則;

④若分別是△的三個(gè)內(nèi)角所對(duì)邊的長(zhǎng),,則△一定是鈍角三角形.

其中真命題的序號(hào)是           

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成都模擬 題型:填空題

給定下列命題:
①半徑為2,圓心角的弧度數(shù)為
1
2
的扇形的面積為
1
2
;
②若a、β為銳角,tan(α+β)=
1
3
,tanβ=
1
2
α+2β=
π
4
;
③若A、B是△ABC的兩個(gè)內(nèi)角,且sinA<sinB,則BC<AC;
④若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng),且a2+b2-c2<0,則△ABC一定是鈍角三角形.
其中真命題的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省福州市鼓樓區(qū)屏東中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給定下列命題:
①半徑為2,圓心角的弧度數(shù)為的扇形的面積為
②若a、β為銳角,,
③若A、B是△ABC的兩個(gè)內(nèi)角,且sinA<sinB,則BC<AC;
④若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng),且a2+b2-c2<0,則△ABC一定是鈍角三角形.
其中真命題的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案