【題目】已知函數(shù),若同時滿足以下條件:
①在D上單調(diào)遞減或單調(diào)遞增;
②存在區(qū)間,使在 上的值域是,那么稱為閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間 ;
(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間;若不是請說明理由;
(3)若是閉函數(shù),求實數(shù)的取值范圍.
【答案】(1),;(2)見解析;(3)
【解析】
(1)由在R上單減,列出方程組,即可求的值;
(2)由函數(shù)y=2x+lgx在(0,+∞)單調(diào)遞增可知 即,結(jié)合對數(shù)函數(shù)的單調(diào)性可判斷
(3)易知在[﹣2,+∞)上單調(diào)遞增.設(shè)滿足條件B的區(qū)間為[a,b],則方程組 有解,方程至少有兩個不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有兩個都不小于k的不根.結(jié)合二次方程的實根分布可求k的范圍
解:(1)∵在R上單減,所以區(qū)間[a,b]滿足,
解得a=﹣1,b=1
(2)∵函數(shù)y=2x+lgx在(0,+∞)單調(diào)遞增
假設(shè)存在滿足條件的區(qū)間[a,b],a<b,則,即
∴l(xiāng)gx=﹣x在(0,+∞)有兩個不同的實數(shù)根,但是結(jié)合對數(shù)函數(shù)的單調(diào)性可知,y=lgx與y=﹣x只有一個交點
故不存在滿足條件的區(qū)間[a,b],函數(shù)y=2x+lgx是不是閉函數(shù)
(3)易知在[﹣2,+∞)上單調(diào)遞增.
設(shè)滿足條件B的區(qū)間為[a,b],則方程組有解,方程至少有兩個不同的解
即方程x2﹣(2k+1)x+k2﹣2=0有兩個都不小于k的不根.
∴ 得,即所求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點為F(1,0),且點(﹣1, )在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 恒成立?若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知互不重合的直線,互不重合的平面,給出下列四個命題,正確命題的個數(shù)是
①若 , ,,則
②若,,則
③若,,,則
④若 , ,則//
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,D是AC的中點,A1D⊥平面ABC,AB=BC,平面BB1D與棱A1C1交于點E.
(1)求證:AC⊥A1B;
(2)求證:平面BB1D⊥平面AA1C1C;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)為上的奇函數(shù),求實數(shù)a的值;
(2)當(dāng)時,函數(shù)在為減函數(shù),求實數(shù)a的取值范圍;
(3)是否存在實數(shù)(),使得 在閉區(qū)間上的最大值為2,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為銳角△ABC三個內(nèi)角A,B,C的對邊,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大小;
(Ⅱ)若f(x)= sin cos +cos2 ,求f(B)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為,離心率,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點為橢圓上的一動點(非長軸端點),的延長線與橢圓交于點,的延長線與橢圓交于點,若面積為,求直線的方程.
【答案】(Ⅰ)(Ⅱ)或
【解析】試題分析:(Ⅰ)由題意得,再由 橢圓的方程為;(Ⅱ)①當(dāng)直線斜率不存在時,不妨取面積為 ,不符合題意. ②當(dāng)直線斜率存在時,設(shè)直線, 由 得 ,再求點的直線的距離 點到直線的距離為面積為 ∴或 所求方程為或.
試題解析:
(Ⅰ)由題意得,∴,
∵,∴,
∴橢圓的方程為.
(Ⅱ)①當(dāng)直線斜率不存在時,不妨取,
∴面積為 ,不符合題意.
②當(dāng)直線斜率存在時,設(shè)直線,
由化簡得,
設(shè),
∴ ,
∵點的直線的距離,
又是線段的中點,∴點到直線的距離為,
∴面積為 ,
∴,∴,∴,∴或,
∴直線的方程為或.
【題型】解答題
【結(jié)束】
25
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若,且,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com