已知函數(shù)數(shù)學(xué)公式,g(x)=(x+1)3
(1)作出函數(shù)f(x)的圖象;
(2)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間,并利用定義證明函數(shù)f(x)在區(qū)間(-3,+∞)上的單調(diào)性;
(3)判斷f(x)-g(x)的零點(diǎn)個(gè)數(shù).

解:(1)函數(shù)=-=-1+,故把函數(shù)y=的圖象向右平移1個(gè)單位,
再向下平移1個(gè)單位,即可得到函數(shù)f(x)的圖象,如圖所示:
(2)函數(shù)f(x)的減區(qū)間為(-∞,1)、(1,+∞).
函數(shù)f(x)在區(qū)間(-3,1)上是減函數(shù),在(1,+∞)上是減函數(shù).
證明:設(shè)-3<x1<x2<1,則f(x1)-f(x2)=-=
由題設(shè)可得 x2-x1>0,x1-1<0,x2-1<0,∴>0,
故有f(x1)-f(x2)>0,f(x1)>f(x2),故函數(shù)f(x)在區(qū)間(-3,1)上是減函數(shù).
同理可證,函數(shù)f(x)在在(1,+∞)上是減函數(shù).
(3)函數(shù)f(x)-g(x)的零點(diǎn)個(gè)數(shù),即函數(shù)f(x)和函數(shù)g(x)=(x+1)3  的圖象交點(diǎn)的個(gè)數(shù),
在同一個(gè)坐標(biāo)系中,畫(huà)出函數(shù)函數(shù)f(x)和函數(shù)g(x)=(x+1)3 的圖象,如圖所示,
由于這2個(gè)函數(shù)的圖象僅有2個(gè)交點(diǎn),故函數(shù)f(x)-g(x)的零點(diǎn)個(gè)數(shù)為2.

分析:(1)化簡(jiǎn)函數(shù)解析式為-1+,故把函數(shù)y=的圖象向右平移1個(gè)單位,再向下平移1個(gè)單位,即可得到函數(shù)f(x)的圖象,如圖所示.
(2)函數(shù)f(x)的減區(qū)間為(-∞,1)、(1,+∞),用函數(shù)的單調(diào)性的定義證明函數(shù)f(x)在區(qū)間(-3,1)上是減函數(shù),在(1,+∞)上是減函數(shù).
(3)函數(shù)f(x)-g(x)的零點(diǎn)個(gè)數(shù),即函數(shù)f(x)和函數(shù)g(x)=(x+1)3 的圖象交點(diǎn)的個(gè)數(shù),在同一個(gè)坐標(biāo)系中,畫(huà)出函數(shù)函數(shù)f(x)和函數(shù)g(x)=
(x+1)3 的圖象,數(shù)形結(jié)合可得由于這2個(gè)函數(shù)的圖象僅有2個(gè)交點(diǎn),從而得出結(jié)論.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性的判斷和證明,函數(shù)的圖象特征,函數(shù)的零點(diǎn)與方程根的關(guān)系,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=g(x)與f(x)=loga(x+1)(a>1)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
(1)寫(xiě)出y=g(x)的解析式;
(2)若函數(shù)F(x)=f(x)+g(x)+m為奇函數(shù),試確定實(shí)數(shù)m的值;
(3)當(dāng)x∈[0,1)時(shí),總有f(x)+g(x)≥n成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=G(x)的圖象過(guò)原點(diǎn),其導(dǎo)函數(shù)為y=f(x),函數(shù)f(x)=3x2+2bx+c且滿(mǎn)足f(1-x)=f(1+x).
(1)若f(x)≥0,對(duì)x∈[0,3]恒成立,求實(shí)數(shù)c的最小值.(2)設(shè)G(x)在x=t處取得極大值,記此極大值為g(t),求g(t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=g(x)的圖象與函數(shù)f(x)=(x-1)2(x≤0)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),則函數(shù)g(x)的解析式為g(x)=
-
x
+1
(x≥1)
-
x
+1
(x≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=g(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),g(x)=log2x,函數(shù)f(x)=4-x2,則函數(shù)f(x)•g(x)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知f(x)+2f(
1x
)=3x,求f(x)的解析式;
(2)已知函數(shù)y=g(x)定義域是[-2,3],求y=g(x+1)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案