等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N*,點(diǎn)(n,Sn),均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.  
(1)求r的值;
(2)當(dāng)b=2時(shí),記bn=
n+1
4an
(n∈N*),求數(shù)列{bn} 的前n項(xiàng)和Tn
(3)由(2),是否存在最小的整數(shù)m,使得對(duì)于任意的n∈N*,均有3-2Tn
m
20
,若存在,求出m的值,若不存在,說明理由.
分析:(1)由已知得 Sn=bn+r,利用數(shù)列中an與 Sn關(guān)系an=
Sn     n=1
Sn-Sn-1    n≥2
求{an}的通項(xiàng)公式,再據(jù)定義求出r的值;
(2)由(1)求得bn=
n+1
2n+1
,即可得到Tn=
2
22
+
3
23
+
4
24
+…+
n+1
2n+1
再用錯(cuò)位相消法求Tn;
(3)對(duì)于任意的n∈N*,均有3-2Tn
m
20
,只需
m
20
大于3-2Tn的最大值
,利用數(shù)列的函數(shù)性質(zhì),求出3-2Tn的最大值,再去確定m的取值情況.
解答:解:(1)因?yàn)閷?duì)任意的n∈N*,點(diǎn)(n,Sn),均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上
所以得   Sn=bn+r,
當(dāng)n=1時(shí),a1=S1=b+r,
當(dāng)n≥2時(shí),an=Sn-Sn-1=bn+r-(bn-1+r )=(b-1)b n-1,
又因?yàn)閧an}為等比數(shù)列,∴公比為b,所以 
a2
a1
=
(b-1)b
b+r
=b
,解得r=-1,首項(xiàng)a1=b-1,
∴an=(b-1)bn-1    
(2)當(dāng)b=2時(shí),an=2n-1,bn=
n+1
4an
=
n+1
2n-1
=
n+1
2n+1
   
則 Tn=
2
22
+
3
23
+
4
24
+…+
n+1
2n+1

1
2
T
n
=
2
23
+
3
24
+
4
25
+…+
n+1
2n+2
    
兩式相減,得
1
2
T
n
=
2
22
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2

=
1
2
+
1
23
(1-
1
2n-1
)
1-
1
2
-
n+1
2n+2

=
3
4
-
1
2n+1
-
n+1
2n+2

∴Tn=
3
2
-
1
2n
-
n+1
2n+1
=
3
2
-
n+3
2n+1

(3)若 3-2Tn
m
20
使得對(duì)于任意的n∈N*,都成立
∴3-(3-
n+3
2n
)<
m
20
,
n+3
2n
m
20
對(duì)于任意的n∈N*,都成立
(n+1)+3
2n+1
-
n+3
2n
=
-n-2
2n
<0
,
n+3
2n
的最大值在n=1時(shí)取得,最大值為2,
m
20
>2,m>40,所以存在這樣的m=41符合題意.
點(diǎn)評(píng):本題是函數(shù)與數(shù)列、不等式的綜合.主要考查等比數(shù)列定義,及利用錯(cuò)位相消法來處理數(shù)列求和、恒成立問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)敘述并證明等比數(shù)列的前n項(xiàng)和公式;
(2)已知Sn是等比數(shù)列{an} 的前n項(xiàng)和,S3,S9,S6成等差數(shù)列,求證:a1+k,a7+k,a4+k(k∈N)成等差數(shù)列;
(3)已知Sn是正項(xiàng)等比數(shù)列{an} 的前n項(xiàng)和,公比0<q≤1,求證:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Sn是等比數(shù)列{an}的前n項(xiàng)和,對(duì)于任意正整數(shù)n,恒有Sn>0,則等比數(shù)列{an}的公比q的取值范圍為
(-1,0)∪(0,+∞)
(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍(lán)山縣模擬)統(tǒng)計(jì)某校高三年級(jí)100名學(xué)生的數(shù)學(xué)月考成績(jī),得到樣本頻率分布直方圖如下圖所示,已知前4組的頻數(shù)分別是等比數(shù)列{an}的前4項(xiàng),后6組的頻數(shù)分別是等差數(shù)列{bn}的前6項(xiàng),
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)m、n為該校學(xué)生的數(shù)學(xué)月考成績(jī),且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,又Wn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,如果a8=10,那么S15:W15=
100
100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和,S2=4,S4=20則數(shù)列的首項(xiàng)a1=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案