函數(shù)y=(sinx+cosx)2+1的最大值是( 。
分析:利用兩角和的正弦公式把函數(shù)y=sinx+cosx 化為
2
sin(x+
π
4
)≤
2
,從而得到結論.
解答:解:∵函數(shù)y=sinx+cosx=
2
sin(x+
π
4
)≤
2
,
故函數(shù)y=sinx+cosx的最大值是
2

∴函數(shù)y=(sinx+cosx)2+1的最大值(
2
)
2
+1=3

故選A.
點評:本題考查兩角和的正弦公式,正弦函數(shù)的定義域和值域,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=
3
cosx-sinx
的圖象向左平移m(m>0)個單位,所得的圖象關于y軸對稱,則m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列四個命題中:
①函數(shù)y=tan(x+
π
4
)
的定義域是{x|x≠
π
4
+kπ,k∈Z}

②已知sinα=
1
2
,且α∈[0,2π],則α的取值集合是{
π
6
}

③函數(shù)f(x)=sin2x+acos2x的圖象關于直線x=-
π
8
對稱,則a的值等于-1;
④函數(shù)y=cos2x+sinx的最小值為-1.
把你認為正確的命題的序號都填在橫線上
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=cos2x-sinx的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=1-sinx(x∈R)的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

.函數(shù)y=cosx(sinx-
3
cosx)+
3
2
在區(qū)間[-
π
2
,π]
的簡圖是( 。

查看答案和解析>>

同步練習冊答案