【題目】設(shè)函數(shù).
(1)若,求函數(shù)在處的切線方程;
(2)若函數(shù)在和處有兩個(gè)極值點(diǎn),其中,.
(i)求實(shí)數(shù)的取值范圍;
(ii)若(e為自然對數(shù)的底數(shù)),求的最大值.
【答案】;(2)(i);(ii).
【解析】
(1)求出和的值,利用點(diǎn)斜式可得出所求切線的方程;
(2)(i)求得,從而可知方程在上有兩個(gè)不等的實(shí)根,可得出關(guān)于實(shí)數(shù)的不等式組,即可求得實(shí)數(shù)的取值范圍;
(ii)由題知、是兩個(gè)極值點(diǎn),結(jié)合韋達(dá)定理,得到關(guān)于、的關(guān)系式,再用換元,構(gòu)造關(guān)于的函數(shù),求出函數(shù)的最大值.
(1)若,,,則,,
此時(shí),函數(shù)在處的切線方程為,即;
(2)(i),,
由題意可知,關(guān)于的方程在上有兩個(gè)不等的實(shí)根,
所以,,解得.
因此,實(shí)數(shù)的取值范圍是;
(ii)由(i)得,,
,
令,則,令,其中.
,
所以,函數(shù)在上單調(diào)遞減,.
因此,當(dāng)時(shí),的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,已知,,,.是線段的中點(diǎn).
(1)求直線與平面所成角的正弦值;
(2)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生想在物理、化學(xué)、生物、政治、歷史、地理、技術(shù)這七門課程中選三門作為選考科目,下列說法錯(cuò)誤的是( )
A.若任意選擇三門課程,選法總數(shù)為
B.若物理和化學(xué)至少選一門,選法總數(shù)為
C.若物理和歷史不能同時(shí)選,選法總數(shù)為
D.若物理和化學(xué)至少選一門,且物理和歷史不能同時(shí)選,選法總數(shù)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間內(nèi)是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:.(注:為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗(yàn),廠家將一批產(chǎn)品發(fā)給商家時(shí),商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗(yàn),以決定是否接收這批產(chǎn)品.
(1)若廠家?guī)旆恐校ㄒ暈閿?shù)量足夠多)的每件產(chǎn)品合格的概率為 從中任意取出 3件進(jìn)行檢驗(yàn),求至少有 件是合格品的概率;
(2)若廠家發(fā)給商家 件產(chǎn)品,其中有不合格,按合同規(guī)定 商家從這 件產(chǎn)品中任取件,都進(jìn)行檢驗(yàn),只有 件都合格時(shí)才接收這批產(chǎn)品,否則拒收.求該商家可能檢驗(yàn)出的不合格產(chǎn)品的件數(shù)ξ的分布列,并求該商家拒收這批產(chǎn)品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E:-=1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),M為OA的中點(diǎn),若以AM為直徑的圓與E的漸近線相切,則雙曲線E的離心率等于( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費(fèi),日常生活中幾乎全部領(lǐng)域都支持手機(jī)支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學(xué)和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機(jī)抽取了60名,統(tǒng)計(jì)他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機(jī)支付族”,其他為“非手機(jī)支付族”.
(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補(bǔ)充完整,并判斷有多大的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān)?
(2)用樣本估計(jì)總體,若從騰訊服務(wù)的用戶中隨機(jī)抽取3位女性用戶,這3位用戶中“手機(jī)支付族”的人數(shù)為,求隨機(jī)變量的期望和方差;
(3)某商場為了推廣手機(jī)支付,特推出兩種優(yōu)惠方案,方案一:手機(jī)支付消費(fèi)每滿1000元可直減100元;方案二:手機(jī)支付消費(fèi)每滿1000元可抽獎(jiǎng)2次,每次中獎(jiǎng)的概率同為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)一次打9折,中獎(jiǎng)兩次打8.5折.如果你打算用手機(jī)支付購買某樣價(jià)值1200元的商品,請從實(shí)際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),若對任意的,恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com