已知實數(shù)x,y滿足
2x-y≤0
x-3y+5≥0
y≥1
,則z=x+y-2的取值范圍是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結合確定z的最大值.
解答: 解:令u=x+y,則y=-x+u,u表示直線y=-x+u
在y軸上的截距.作出不等式組表示的平面區(qū)域,
易知直線y=-x+u經過B(1,2)時,u有最大值3,
直線y=-x+u經過A(-2,1),u有最小值為-1,
因此z=x+y-2的取值范圍是[-3,1].
故答案為:[-3,1]
點評:本題主要考查線性規(guī)劃的應用,結合目標函數(shù)的幾何意義,利用數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c+lnx(a≠0),曲線y=f(x)在點(1,f(1))處的切線方程是y=x-1.
(Ⅰ)試用a表示b、c;
(Ⅱ)討論f(x)的定義域上的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是偶函數(shù),且f(x)在[0,+∞]是增函數(shù),如果不等式f(a)≤f(1)恒成立,則實數(shù)a取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過點A(m,m)的任意直線都與曲線C:x2+y2-x-y=0至少有一個交點,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x1,x2是方程πsin
x
4
=0的兩個零點,且x1<x2,則x2-x1的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC是圓O的內接三角形,PA是圓O的切線,PB交AC于點E,交圓O于點D,若PA=PE,PB=9,PD=1,∠ABC=60°,則EC的長等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從0至4五個自然數(shù)中任意取出不同三個,分別作為關于x的方程ax2+bx+c=0的系數(shù),則所得方程有實數(shù)解的取法有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x+3y≥0
x-2y≥0
x2+y2≤4
所確定的平面區(qū)域D的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={f(x)|f2(a)-f2(b)=f(a+b)•f(a-b),x,y∈R},有下列命題:
①若f1(x)=
1,  x≥0
-1,x<0
,則f1(x)∈M;
②若f2(x)=2x,則f2(x)∈M;
③若f3(x)∈M,則y=f3(x)的圖象關于原點對稱;
④若f4(x)∈M,則對于任意不等的實數(shù)x1,x2,總有
f4(x1)-f4(x2)
x1-x2
<0成立.
其中所有正確命題的序號是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

同步練習冊答案