某人去銀行取錢,他忘記了信用卡密碼的最后一位,但他確定是他出生年月(1969.12)中出現(xiàn)的4個(gè)數(shù)字1,2,6,9中的某一個(gè),便在這4個(gè)數(shù)中一一去試.已知當(dāng)連續(xù)三次輸錯(cuò)時(shí),機(jī)器會(huì)吃卡,則他被吃卡的概率是________.


分析:第一次輸入錯(cuò)誤的概率、第二次輸入錯(cuò)誤的概率、第三次輸入錯(cuò)誤的概率,再根據(jù)相互獨(dú)立事件的概率乘法公式求得結(jié)果
解答:第一次輸入錯(cuò)誤的概率為,第二次輸入錯(cuò)誤的概率為,第三次輸入錯(cuò)誤的概率為,
由此可得連續(xù)三次輸入錯(cuò)誤的概率為 =
故答案為
點(diǎn)評:本題主要考查古典概型及其概率計(jì)算公式,相互獨(dú)立事件的概率乘法公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某人去銀行取錢,他忘記了信用卡密碼的最后一位,但他確定是他出生年月(1969.12)中出現(xiàn)的4個(gè)數(shù)字1,2,6,9中的某一個(gè),便在這4個(gè)數(shù)中一一去試.已知當(dāng)連續(xù)三次輸錯(cuò)時(shí),機(jī)器會(huì)吃卡,則他被吃卡的概率是
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)大附中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

某人去銀行取錢,他忘記了信用卡密碼的最后一位,但他確定是他出生年月(1969.12)中出現(xiàn)的4個(gè)數(shù)字1,2,6,9中的某一個(gè),便在這4個(gè)數(shù)中一一去試.已知當(dāng)連續(xù)三次輸錯(cuò)時(shí),機(jī)器會(huì)吃卡,則他被吃卡的概率是   

查看答案和解析>>

同步練習(xí)冊答案