【題目】如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端OA到該圓上任意一點(diǎn)的距離均不少于80 m.經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正北方向60 m,點(diǎn)C位于點(diǎn)O正東方向170 m(OC為河岸),tanBCO=.

1)求新橋BC的長(zhǎng);

2)當(dāng)OM多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最大?

【答案】(1) 150 m (2) |OM|=10 m

【解析】試題分析:本題是應(yīng)用題,我們可用解析法來(lái)解決,為此以為原點(diǎn),以向東,向北為坐標(biāo)軸建立直角坐標(biāo)系.1點(diǎn)坐標(biāo)炎, ,因此要求的長(zhǎng),就要求得點(diǎn)坐標(biāo),已知說(shuō)明直線斜率為,這樣直線方程可立即寫(xiě)出,又,故斜率也能得出,這樣方程已知,兩條直線的交點(diǎn)的坐標(biāo)隨之而得;(2)實(shí)質(zhì)就是圓半徑最大,即線段上哪個(gè)點(diǎn)到直線的距離最大,為此設(shè),由,圓半徑是圓心到直線的距離,而求它的最大值,要考慮條件古橋兩端到該圓上任一點(diǎn)的距離均不少于80,列出不等式組,可求得的范圍,進(jìn)而求得最大值.當(dāng)然本題如果用解三角形的知識(shí)也可以解決.

試題解析:

1)如圖,以軸建立直角坐標(biāo)系,則, ,由題意,直線方程為.又,故直線方程為,由,解得,即,所以 ;

2)設(shè),即 ,由(1)直線的一般方程為,圓的半徑為,由題意要求,由于,因此 ,,所以當(dāng)時(shí), 取得最大值,此時(shí)圓面積最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)求曲線在點(diǎn)處的切線的斜率;

(Ⅱ)判斷方程的導(dǎo)數(shù)在區(qū)間內(nèi)的根的個(gè)數(shù),說(shuō)明理由

(Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

對(duì)任意的, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知兩個(gè)正方形ABCDDCEF不在同一平面內(nèi),M,N分別為ABDF的中點(diǎn).

(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線MEBN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對(duì)任意x>0,都有f′(x)>.

(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;

(2)設(shè)x1x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1x2);

(3)請(qǐng)將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: 的焦點(diǎn)在x軸上,A是E的左頂點(diǎn),斜率為k(k0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MANA

(1)當(dāng)t=4,|AM|=|AN|時(shí),求AMN的面積;

(2)當(dāng)2|AM|=|AN|時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)求的單調(diào)區(qū)間.

)證明:當(dāng)時(shí),方程在區(qū)間上只有一個(gè)零點(diǎn).

)設(shè),其中恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,EAD的中點(diǎn),FB1C1的中點(diǎn).

(1)求證:A1F∥平面ECC1;

(2)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請(qǐng)確定點(diǎn)G的位置,并證明你的結(jié)論,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線.

(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的倍、2倍后得到曲線.試寫(xiě)出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案