設(shè)
y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:①f(-1)=f(1)=0;②對(duì)任意的u,v∈[-1,1],都有.(1)
證明:對(duì)任意的x∈[-1,1],都有x-1≤f(x)≤1-x.(2)
證明:對(duì)任意的u,v∈[-1,1],都有.(3)
在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的奇函數(shù)y=f(x),且使得:若存在,請(qǐng)舉一例;若不存在,請(qǐng)說(shuō)明理由.
(1) 證明:由題設(shè)條件可知,當(dāng):x∈[-1,1]時(shí),有 .即 x-1≤f(x)≤1-x.(2) 證明:對(duì)任意的u,v∈[-1,1],當(dāng) 時(shí),有.當(dāng) 時(shí),有,不妨設(shè)u<0,v>0,且v-u>1,所以 .綜上可知:對(duì)任意的 u,v∈[-1,1],都有.(3) 解:滿足所述條件的函數(shù)不存在.理由如下:假設(shè)存在函數(shù) f(x)滿足條件,則由|f(u)-f(v)|=|u-v|.u ,,得.又 f(1)=0,所以.又因?yàn)?/FONT>f(x)為奇函數(shù),所以f(0)=0.由條件|f(u)-f(v)|<|u-v|,u,,得.這與矛盾,所以假設(shè)不成立,即這樣的函數(shù)不存在. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
①f(-1)=f(1)=0;
②對(duì)任意u,v∈[-1,1]都有|f(u)-f(v)|≤|u-v|.
(1)證明對(duì)任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(2)證明對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|≤1;
(3)在區(qū)間[-1,1]上是否存在滿足條件的奇函數(shù)y=f(x),且使得
若存在,請(qǐng)舉一例;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
①f(-1)=f(1)=0;
②對(duì)任意u,v∈[-1,1]都有|f(u)-f(v)|≤|u-v|.
(1)證明對(duì)任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(2)證明對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|≤1;
(3)在區(qū)間[-1,1]上是否存在滿足條件的奇函數(shù)y=f(x),且使得
若存在,請(qǐng)舉一例;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省模擬題 題型:證明題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(i)f(-1)=f(1)=0;
(ii)對(duì)任意的u、v∈[-1,1]都有|f(u)-f(v)|≤|u-v|.
(1)證明對(duì)x∈[-1,1]都有x-1≤f(x)≤1-x;
(2)證明對(duì)任意的u、v∈[-1,1]都有|f(u)-f(v)|≤1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com