已知圓C:(x+4)2+y2=4,圓D的圓心D在y 軸上且與圓C外切,圓D與y 軸交于A、B兩點(diǎn),定點(diǎn)P的坐標(biāo)為(-3,0).
(1)若點(diǎn)D(0,3),求∠APB的正切值;
(2)當(dāng)點(diǎn)D在y軸上運(yùn)動(dòng)時(shí),求∠APB的最大值;
(3)在x軸上是否存在定點(diǎn)Q,當(dāng)圓D在y軸上運(yùn)動(dòng)時(shí),∠AQB是定值?如果存在,求出Q點(diǎn)坐標(biāo);如果不存在,說(shuō)明理由.
【答案】分析:(1)由已知中圓C:(x+4)2+y2=4,點(diǎn)D(0,3),我們易求出CD的長(zhǎng),進(jìn)而求出圓D的半徑,求出A,B兩點(diǎn)坐標(biāo)后,可由tan∠APB=kBP得到結(jié)果.
(2)設(shè)D點(diǎn)坐標(biāo)為(0,a),圓D半徑為r,我們可以求出對(duì)應(yīng)的圓D的方程和A,B兩點(diǎn)的坐標(biāo),進(jìn)而求出∠APB正切的表達(dá)式(含參數(shù)r),求出其最值后,即可根據(jù)正切函數(shù)的單調(diào)性,求出∠APB的最大值;
(3)假設(shè)存在點(diǎn)Q(b,0),根據(jù)∠AQB是定值,我們構(gòu)造關(guān)于b的方程,若方程有解,則存在這樣的點(diǎn),若方程無(wú)實(shí)根,則不存在這樣的點(diǎn).
解答:解:(1)∵|CD|=5,
∴圓D的半徑r=5-2=3,此時(shí)A、B坐標(biāo)分別為A(0,0)、B(0,6)
∴tan∠APB=kBP=2(3分)
(2)設(shè)D點(diǎn)坐標(biāo)為(0,a),圓D半徑為r,則(r+2)2=16+a2,A、B的坐標(biāo)分別為(0,a-r),(0,a+r)
,
==
∵|r+2|2≥16,
∴r≥2,
∴8r-6≥10,

.(8分)
(3)假設(shè)存在點(diǎn)Q(b,0),由,,得
∵a2=(r+2)2-16,

欲使∠AQB的大小與r無(wú)關(guān),則當(dāng)且僅當(dāng)b2=12,即,
此時(shí)有,即得∠AQB=60°為定值,
故存在,使∠AQB為定值60°.(13分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線和圓的方程的應(yīng)用,其中根據(jù)已知中圓C:(x+4)2+y2=4,圓D的圓心D在y 軸上且與圓C外切,圓D與y 軸交于A、B兩點(diǎn),確定圓D的方程,進(jìn)而求出A,B的方程是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-4)2+(y-m)2=16(m∈N*),直線4x-3y-16=0過(guò)橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn),且交圓C所得的弦長(zhǎng)為
32
5
,點(diǎn)A(3,1)在橢圓E上.
(Ⅰ)求m的值及橢圓E的方程;
(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
AC
AQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x+4)2+y2=4,圓D的圓心D在y 軸上且與圓C外切,圓D與y 軸交于A、B兩點(diǎn),定點(diǎn)P的坐標(biāo)為(-3,0).
(1)若點(diǎn)D(0,3),求∠APB的正切值;
(2)當(dāng)點(diǎn)D在y軸上運(yùn)動(dòng)時(shí),求∠APB的最大值;
(3)在x軸上是否存在定點(diǎn)Q,當(dāng)圓D在y軸上運(yùn)動(dòng)時(shí),∠AQB是定值?如果存在,求出Q點(diǎn)坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x+4)2+y2=4,圓D的圓心在y軸上且與圓C外切,圓D與y軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B上方),點(diǎn)P(-2
3
,0)

(I)圓D的圓心在什么位置時(shí),圓D與x軸相切;
(II)當(dāng)圓心D在y軸的任意位置時(shí),求直線AP與直線BP的傾斜角的差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-4)2+y2=4,圓D的圓心D在y軸上,且與圓C外切,圓D交y軸于A、B兩點(diǎn)(A在B的上方),點(diǎn)P為(-3,0).
(1)若D(0,3),求∠APB的正切值;
(2)若D在y軸上運(yùn)動(dòng),當(dāng)D在何位置時(shí),tan∠APB最大?并求出最大值;
(3)在x軸上是否存在點(diǎn)Q,使當(dāng)D在y軸上運(yùn)動(dòng)時(shí),∠AQB為定值?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線L被兩平行直線L1:2x-5y=-9與L2:2x-5y-7=0所截線段AB的中點(diǎn)恰在直線x-4y-1=0上,已知圓C:(x+4)2+(y+1)2=25. 
(Ⅰ)求兩平行直線L1與L2的距離;
(Ⅱ)證明直線L與圓C恒有兩個(gè)交點(diǎn);
(Ⅲ)求直線L被圓C截得的弦長(zhǎng)最小時(shí)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案