設(shè)l是經(jīng)過點A(3,5)的任意一條直線,原點到直線l的距離為d,則對應(yīng)于d取得最大值時的直線l的方程為   
【答案】分析:由題意當所求直線與點A與原點的連線垂直時d取得最大值,進而可得其斜率,由點斜式方程可得,化為一般式即可.
解答:解:當所求直線與點A與原點的連線垂直時d取得最大值,
=可知所求直線的斜率為
故可得直線的方程為y-5=(x-3),
化為一般式可得3x+5y-34=0,
故答案為:3x+5y-34=0
點評:本題考查直線方程的求解,得出當所求直線與點A與原點的連線垂直時d取得最大值是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過點A(1,2)、B(3,0),并且直線m:2x-3y=0平分圓C.
(1)求圓C的方程;
(2)過點D(0,3),且斜率為k的直線l與圓C有兩個不同的交點E、F,若|EF|≥2
3
,求k的取值范圍;
(3)若圓C關(guān)于點(
3
2
,1)
對稱的曲線為圓Q,設(shè)M(x1,y1)、P(x2,y2)(x1≠±x2)是圓Q上的兩個動點,點M關(guān)于原點的對稱點為M1,點M關(guān)于x軸的對稱點為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)l是經(jīng)過點A(3,5)的任意一條直線,原點到直線l的距離為d,則對應(yīng)于d取得最大值時的直線l的方程為
3x+5y-34=0
3x+5y-34=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

設(shè)l是經(jīng)過點A(3,5)的任意一條直線,原點到直線l的距離為d,則對應(yīng)于d取得最大值時的直線l的方程為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省寧波市海曙區(qū)萬里國際學校高二(上)期中數(shù)學試卷(理科)(解析版) 題型:填空題

設(shè)l是經(jīng)過點A(3,5)的任意一條直線,原點到直線l的距離為d,則對應(yīng)于d取得最大值時的直線l的方程為   

查看答案和解析>>

同步練習冊答案