在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且
3
a=2csinA.
(Ⅰ)確定角C的大小;
(Ⅱ)若c=
7
,且△ABC的面積為
3
3
2
,求a+b的值.
分析:(1)通過正弦定理把題設(shè)等式中的邊轉(zhuǎn)化成角的正弦,化簡整理求得sinC的值,進而求得C.
(2)先利用面積公式求得ab的值,進而利用余弦定理求得a2+b2-ab,最后聯(lián)立變形求得a+b的值.
解答:解:(1)由
3
a=2csinA
及正弦定理得:
a
c
=
2sinA
3
=
sinA
sinC
,
∵sinA≠0,∴sinC=
3
2

在銳角△ABC中,C=
π
3

(2)∵c=
7
C=
π
3
,
由面積公式得
1
2
absin
π
3
=
3
3
2
,即ab=6①
由余弦定理得a2+b2-2abcos
π
3
=7
,即a2+b2-ab=7②
由②變形得(a+b)2=25,故a+b=5.
點評:本題主要考查了正弦定理和余弦定理的運用.對于這兩個定理的基本公式和變形公式應(yīng)熟練記憶,并能靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

己知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大;
(Ⅱ)當c=1時,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•張掖模擬)在銳角△ABC中,角A、B、C所對的邊分別為a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范圍;
(2)若a=
3
,求b2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函數(shù)f(x)的表達式,并指出f(x)的單調(diào)遞減區(qū)間;
(2)在銳角△ABC中,角A、B、C所對的邊分別為a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大。
(Ⅱ)求函數(shù)f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)當c=2a,且b=3
7
時,求a及△ABC的面積.

查看答案和解析>>

同步練習冊答案