【題目】已知五邊形ABECD由一個(gè)直角梯形和一個(gè)等邊三角形構(gòu)成(如圖1所示),.將梯形沿著折起(如圖2所示),點(diǎn)的中點(diǎn),平面

1)求證:;

2)若,求二面角的余弦值.

【答案】1)詳見解析;(2.

【解析】

1)根據(jù)平面,得到平面平面,由,得到平面即可.

2)建立空間直角坐標(biāo)系,設(shè),分別求得平面EAD和平面EBD的一個(gè)法向量,代入公式求解.

1)因?yàn)?/span>平面,平面

所以平面平面,

因?yàn)辄c(diǎn)的中點(diǎn),三角形是等邊三角形,

所以,且平面平面

所以平面,

因?yàn)?/span>平面

所以;

2)建立如圖所示空間直角坐標(biāo)系:

設(shè),則,

,

設(shè)平面EAD的一個(gè)法向量為,

則有,即,

,則

設(shè)平面EBD的一個(gè)法向量為,

則有,即,

,則,

所以,

又由圖可知二面角的平面角為銳角,

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),直線C2的方程為,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1和直線C2的極坐標(biāo)方程;

(2)若直線C2與曲線C1交于A,B兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為,不過(guò)原點(diǎn)O的直線C交于A,B兩點(diǎn),且線段AB被直線OP平分.

1)求橢圓C的方程;

2)求k的值;

3)求面積取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,,函數(shù).

1)如果實(shí)數(shù)a,b滿足,,試判斷函數(shù)的奇偶性;

2)設(shè),判斷函數(shù)R上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若時(shí),取得極值,求的值;

(2)若在其定義域內(nèi)為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2 sin(x+)。

(1)若點(diǎn)P(1,-)在角的終邊上,求:cos和f(-)的值;

(2)若x [ ],求f(x)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若對(duì)于任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù), , 為自然對(duì)數(shù)的底數(shù).當(dāng)時(shí),若, ,不等式成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案