求證:
C
0
n
+
2C
1
n
+3
C
2
n
+…+(n+1
)C
n
n
=2n+n•2n-1
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:直接采用倒序相加法再結(jié)合組合數(shù)的性質(zhì)即可證明結(jié)論;
解答: 證明:記S=
C
0
n
+
2C
1
n
+3
C
2
n
+…+(n+1
)C
n
n
,
       倒序則S=(n+1)Cnn+nCnn-1+…+
C
0
n
,
∴2S=(n+2)cn0+(n+2)Cn1+…+(n+2)Cnn=(n+2)•2n
∴S=2n+n•2n-1
點(diǎn)評:本題考查倒序相加求和及二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在它們與坐標(biāo)軸交點(diǎn)處的切線互相平行.
(Ⅰ)求常數(shù)a的值;
(Ⅱ)若存在x∈[0,+∞),使不等式
x-m
f(x)
>x成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)令u(x)=|f(x)-g(x)|,求證:u(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個進(jìn)行乒乓球比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對方多2分或打滿6局時停止,設(shè)甲在每局中獲勝的概率為
2
3
,乙在每局中獲勝的概率為
1
3
,且各局勝負(fù)相互獨(dú)立.
(1)求甲在打的局?jǐn)?shù)最少的情況下獲勝的概率;
(2)求比賽停止時已打局?jǐn)?shù)ξ的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(1+x)α的定義域是[-1,+∞),其中常數(shù)α>0.
(1)若α>1,求y=f(x)的過原點(diǎn)的切線方程.
(2)當(dāng)α>2時,求最大實(shí)數(shù)A,使不等式f(x)>1+αx+Ax2對x>0恒成立.
(3)證明當(dāng)α>1時,對任何n∈N*,有1<
1
n
n+1
k=2
((
k-1
k
α+
α
k
)<α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,公比為q,前m項(xiàng)和為Sm(Sm≠0),證明:Sm,S2m-Sm,S3m-S2m,…,Skm-S(k-1)m構(gòu)成公比為 q的m次冪的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,a2=6,a5=12;數(shù)列{bn}的前n項(xiàng)和是Sn,且Sn+
1
2
bn=1.
(1)求數(shù)列{an}和{bn}通項(xiàng)公式;
(2)記cn=
-2
an•log
bn
2
,數(shù)列{cn}的前n項(xiàng)和為Tn,若Tn
m-2012
2
對一切n∈N*都成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax3+3x2-x恰好有三個單調(diào)區(qū)間,那么a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C2:x2=2py(p>0)的通徑長為4,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,且過拋物線C2的焦點(diǎn).
(1)求拋物線C2和橢圓C1的方程;
(2)過定點(diǎn)M(-1,
3
2
)引直線l交拋物線C2于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),分別過A、B作拋物線C2的切線l1,l2,且l1與橢圓C1相交于P,Q兩點(diǎn).記此時兩切線l1,l2的交點(diǎn)為點(diǎn)C.
①求點(diǎn)C的軌跡方程;
②設(shè)點(diǎn)D(0,
1
4
),求△DPQ的面積的最大值,并求出此時點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=asinx+cosx的圖象關(guān)于點(diǎn)(-
π
3
,0)成中心對稱,則a=
 

查看答案和解析>>

同步練習(xí)冊答案