已知函數(shù)f(x)=
1+ln(x+1)
x
(x>0).
(Ⅰ)試判斷函數(shù)f(x)在(0,+∞)上單調(diào)性并證明你的結(jié)論;
(Ⅱ)若f(x)>
k
x+1
?x∈(0,+∞)恒成立,求正整數(shù)k的最大值.
考點(diǎn):函數(shù)恒成立問(wèn)題,函數(shù)的單調(diào)性及單調(diào)區(qū)間
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)利用導(dǎo)數(shù)的符號(hào)即可作出判斷;
(Ⅱ)f(x)>
k
x+1
恒成立,化為h(x)=
(x+1)[1+ln(x+1)]
x
>k恒成立,即h(x)的最小值大于k.求導(dǎo)h′(x)=
x-1-ln(x+1)
x2
,記g(x)=x-1-ln(x+1)(x>0),利用導(dǎo)數(shù)可判斷g(x)的單調(diào)性及g(x)的零點(diǎn)所在區(qū)間,進(jìn)而可得h(x)的最小值,得到k的范圍,由此可求最小正整數(shù)k.
解答: 解:(Ⅰ)f(x)在(0,+∞)上是減函數(shù).證明如下:
f′(x)=
1
x2
[
x
x+1
-1-ln(x+1)]
=-
1
x2
[
1
x+1
+ln(x+1)],
∵x>0,∴x2>0,
1
x+1
>0,ln(x+1)>0,∴f′(x)<0,
∴f(x)在(0,+∞)上是減函數(shù).
(Ⅱ)f(x)>
k
x+1
恒成立,即h(x)=
(x+1)[1+ln(x+1)]
x
>k恒成立,即h(x)的最小值大于k.
h′(x)=
x-1-ln(x+1)
x2
,記g(x)=x-1-ln(x+1)(x>0),
則g′(x)=
x
x+1
>0,∴g(x)在(0,+∞)上單調(diào)遞增,
又g(2)=1-ln3<0,g(3)=2-2ln2>0,
∴g(x)=0存在唯一實(shí)根a,且滿足a∈(2,3),g(a)=0,即a=1+ln(a+1),
當(dāng)x>a時(shí),g(x)>0,h′(x)>0,當(dāng)0<x<a時(shí),g(x)<0,h′(x)<0,
∴h(x)min=h(a)=
(a+1)[1+ln(a+1)]
a
=a+1∈(3,4),
∴k<a+1,
故正整數(shù)k的最大值為3.
點(diǎn)評(píng):該題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值及函數(shù)恒成立問(wèn)題,考查轉(zhuǎn)化思想,考查學(xué)生靈活運(yùn)用知識(shí)分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足以下兩個(gè)條件:
①對(duì)任意的x,y∈R,f(x-y+1)=f x)f(y)+f(1-x)f(1-y);
②f(x)在區(qū)間[0,1]上單調(diào)遞增;
(1)求f(0);
(2)求證:f(x)是圖象關(guān)于直線x=1對(duì)稱的奇函數(shù);
(3)求不等式的解集f(x)≥
1
2
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC---A1B1C1中,D、E分別是AB、BB1的中點(diǎn),
(1)證明:BC1∥平面A1CD
(2)若AA1=AB=BC=CA=2,側(cè)棱AA1⊥底面ABC,求三棱錐A1-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=2cosθ+2sinθ,直線l的參數(shù)方程是
x=-
3
5
t+4
y=
4
5
t
(t為參數(shù)).
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線l與x軸的交點(diǎn)是M,點(diǎn)N是曲線C上的一個(gè)動(dòng)點(diǎn),求MN的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)解關(guān)于x的不等式x2-ax-6a2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(2x+1)的定義域?yàn)椋?,1),求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1的參數(shù)方程為:
x=1-2t
y=3+t
,t為參數(shù).
(1)將直線l1的參數(shù)方程化成直線的普通方程(寫成一般式);
(2)已知直線l2:x+y-2=0,判斷l(xiāng)1與l2是否相交,如果相交,請(qǐng)求出交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-
 a
ax+
a
,證明函數(shù)y=f(x)的圖象關(guān)于(
1
2
,-
1
2
)對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin(θ+
π
8
)=2,則極點(diǎn)O到直線l的距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案