15.集合M={x|log2(1-x)<0},集合N={x|-1≤x≤1},則M∩N等于( 。
A.[-1,1)B.[0,1)C.[-1,1]D.(0,1)

分析 化簡集合M、N,根據(jù)交集的定義寫出M∩N即可.

解答 解:集合M={x|log2(1-x)<0}
={x|1>1-x>0}
={x|0<x<1}
=(0,1);
集合N={x|-1≤x≤1}
=[-1,1];
所以M∩N=(0,1).
故選:D.

點(diǎn)評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題p:函數(shù)f(x)=lg(ax2-4x+a)的定義域?yàn)镽;命題q:不等式2x2+x>2+ax,對?x∈(-∞,-1)上恒成立.
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,平行四邊形ABCD中,點(diǎn)E在線段AD上,BE與AC交于點(diǎn)F,設(shè)$\overrightarrow{AB}=a,\overrightarrow{AD}=b$.
(I)若E為AD的中點(diǎn),用向量$\overrightarrow{a},\overrightarrow$表示$\overrightarrow{CE}+\overrightarrow{BE}$;
(II)用向量的方法探究:在線段AD上是否存在點(diǎn)E,使得點(diǎn)F恰好為BE的一個三等分點(diǎn),若有,求出滿足條件的所有點(diǎn)E的位置;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+4xy,f(1)=1,則f(-2)=( 。
A.-2B.2C.6D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}ln({1-x}),x<0\\{({x-1})^3}+1,x≥0\end{array}$,若f(x)≥ax恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.$[{0,\frac{2}{3}}]$B.$[{0,\frac{3}{4}}]$C.[0,1]D.$[{0,\frac{3}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中,a1=-2,前n項(xiàng)和Sn滿足an+1+3Sn+2=0(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在整數(shù)對(m,n)滿足$a_n^2-m{a_n}-4m-8=0$?若存在,求出所有滿足題意的整數(shù)對(m,n);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如果定義在R上的函數(shù)f(x)滿足:對于任意x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱f(x)為“H函數(shù)”.給出下列函數(shù):①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④$f(x)=\left\{\begin{array}{l}ln|x|,x≠0\\ 0,x=0.\end{array}\right.$
其中“H函數(shù)”的個數(shù)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)實(shí)數(shù)m,n滿足$\frac{6}{m}+\frac{4}{n}=\sqrt{2mn}$,則mn的最小值為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.直線x+ay+6=0與直線(a-2)x+3y+2a=0平行,則a的值為( 。
A.3 或-1B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案