設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2是an+2 和an的等比中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明++…+<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿(mǎn)足n>m 的一切正整數(shù)n,不等式2Sn-4200>恒成立,求這樣的正整數(shù)m共有多少個(gè)?
【答案】分析:(Ⅰ)由4,且an>0. td 當(dāng)n=1時(shí),4+2a1,解得a1=2.當(dāng)n≥2時(shí),有4Sn-1=.于是4.故(an+an-1)(an-an-1)=2(an+an-1).由此能證明數(shù)列{an}是首項(xiàng)為2,公差為2的等差數(shù)列,且an=2n.
(Ⅱ)因?yàn)閍n=2n,則,由此能夠證明++…+<1.
(Ⅲ)由,得2n(n+1)-4200>2n2,所以n>2100.故M={2000,2002,…,2008,2010,2012,…,2998}.由此能夠求出集合M中滿(mǎn)足條件的正整數(shù)m的個(gè)數(shù).
解答:解:(Ⅰ)由已知,4,且an>0. …(1分)
當(dāng)n=1時(shí),4+2a1,解得a1=2.    …(2分)
當(dāng)n≥2時(shí),有4Sn-1=
于是4Sn-4Sn-1=,
即4
于是,
即(an+an-1)(an-an-1)=2(an+an-1).
因?yàn)閍n+an-1>0,
所以an-an-1=2,n≥2.
故數(shù)列{an}是首項(xiàng)為2,公差為2的等差數(shù)列,且an=2n.…(4分)
(Ⅱ)證明:因?yàn)閍n=2n,
,…(5分)
所以=(1-)+()+…+(
=1-.…(7分)
(Ⅲ)由,
得2n(n+1)-4200>2n2,所以n>2100.  …(9分)
由題設(shè),M={2000,2002,…,2008,2010,2012,…,2998}.
因?yàn)閙∈M,所以m=2100,2102,…,2998均滿(mǎn)足條件.…(10分)
且這些數(shù)組成首項(xiàng)為2100,公差為2的等差數(shù)列.
設(shè)這個(gè)等差數(shù)列共有k項(xiàng),
則2100+2(k-1)=2998,解得k=450.
故集合M中滿(mǎn)足條件的正整數(shù)m共有450個(gè). …(12分)
點(diǎn)評(píng):本題考查等差數(shù)列的證明,數(shù)列通項(xiàng)公式的求法,證明證明++…+<1和求集合中元素的個(gè)數(shù).綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求證:an2=2Sn-an;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=3n+(-1)n-1λ•2an(λ為非零整數(shù),n∈N*)試確定λ的值,使得對(duì)任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),Sn是其前n項(xiàng)和,且對(duì)任意n∈N*都有an2=2Sn-an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)均為正實(shí)數(shù),bn=log2an,若數(shù)列{bn}滿(mǎn)足b2=0,bn+1=bn+log2p,其中p為正常數(shù),且p≠1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)M,使得當(dāng)n>M時(shí),a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使結(jié)論成立的p的取值范圍和相應(yīng)的M的最小值;若不存在,請(qǐng)說(shuō)明理由;
(3)若p=2,設(shè)數(shù)列{cn}對(duì)任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,問(wèn)數(shù)列{cn}是不是等比數(shù)列?若是,請(qǐng)求出其通項(xiàng)公式;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)和為Sn,點(diǎn)(an,Sn)在函數(shù)y=
1
8
x2+
1
2
x+
1
2
的圖象上,數(shù)列{bn}的通項(xiàng)公式為bn=
an+1
an
+
an
an+1
,其前n項(xiàng)和為T(mén)n
(1)求an;   
(2)求證:Tn-2n<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江蘇一模)設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)的和為Sn,對(duì)于任意正整數(shù)m,n,Sm+n=
2a2m(1+S2n)
-1
恒成立.
(1)若a1=1,求a2,a3,a4及數(shù)列{an}的通項(xiàng)公式;
(2)若a4=a2(a1+a2+1),求證:數(shù)列{an}成等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案