3.若函數(shù)y=f(x)及y=g(x)的圖象分別如圖所示,方程f(g(x))=0、g(f(x))=0的實(shí)根個(gè)數(shù)分別為a、b,則a+b=10.

分析 結(jié)合函數(shù)圖象把方程根的個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)個(gè)數(shù),可分別求得a,b進(jìn)而可得答案.

解答 解:由圖象知,f(x)=0有3個(gè)根,0,±m(xù),1<m<2,
g(x)=0有2個(gè)根,-2<n<-1,0<p<1,
由f(g(x))=0,得g(x)=0或±x1,
由圖象可知g(x)所對(duì)每一個(gè)值都能有2個(gè)根,因而a=6;
由g(f(x))=0,知f(x)=n 或p,
由圖象可以看出n時(shí)有1根,
而p時(shí)有3個(gè),
即b=1+3=4,
∴a+b=6+4=10,
故答案為:10.

點(diǎn)評(píng) 本題主要考查函數(shù)函數(shù)的圖象及其應(yīng)用,考查方程根的個(gè)數(shù),利用數(shù)形結(jié)合思想是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=x2-2x+5,當(dāng)x∈[t,t+1]時(shí),求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知全集為R,集合A={x|x≤1},B={x|x≥-2},則A∪B=( 。
A.RB.{x|-2≤x≤1}C.AD.B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若命題p:?x0∈R,使x02+(a-1)x0+1<0,則該命題的否定¬p為( 。
A.?x0∉R,使x02+(a-1)x0+1<0B.?x∈R,x2+(a-1)x+1<0
C.?x0∈R,使x02+(a-1)x0+1≥0D.?x∈R,x2+(a-1)x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.冪函數(shù)y=xa,y=xb,y=xc,y=xd在第一象限的圖象如圖所示,則a,b,c,d的大小關(guān)系是 ( 。
A.a>b>c>dB.d>b>c>aC.d>c>b>aD.b>c>d>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)M=a+$\frac{1}{a-2}$(2<a<3),$N=x(4\sqrt{3}-3x)(0<x<\frac{{4\sqrt{3}}}{3})$,則M,N的大小關(guān)系為M>N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.計(jì)算:
(1)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$;       
(2)2$\sqrt{3}$×$\root{6}{12}$×$\root{3}{\frac{3}{2}}$
(3)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}-{x^{-2}}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)角α終邊經(jīng)過(guò)點(diǎn)P0(-3,-4),求sinα,cosα,tanα的值.
(2)已知角終邊上一點(diǎn)$P(-\sqrt{3},m)({m≠0})$,且sinα=$\frac{{\sqrt{2}}}{4}$m,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知全集U={1,2,3,4,5,6,7},A={2,4,6},B={1,3,5},則A∩∁UB等于( 。
A.{2,5}B.{1,3,5}C.{2,4,5}D.{2,4,6}

查看答案和解析>>

同步練習(xí)冊(cè)答案