如圖,幾何體EABCD是四棱錐,△ABD為正三角形,CB=CD,EC⊥BD.

(1)求證:BE=DE;
(2)若∠BCD=120°,M為線段AE的中點,求證:DM∥平面BEC.
(1)見解析  (2)見解析

證明:(1)如圖所示,取BD的中點O,連接CO,EO.

由于CB=CD,
所以CO⊥BD.
又EC⊥BD,EC∩CO=C,
CO,EC?平面EOC,
所以BD⊥平面EOC,
因此BD⊥EO.
又O為BD的中點,
所以BE=DE.
(2)法一 如圖所示,取AB的中點N,連接DM,DN,MN.

因為M是AE的中點,
所以MN∥BE.
又MN平面BEC,
BE?平面BEC,
所以MN∥平面BEC.
又因為△ABD為正三角形,
所以∠BDN=30°.
又CB=CD,∠BCD=120°,
因此∠CBD=30°.
所以DN∥BC.
又DN平面BEC,BC?平面BEC,
所以DN∥平面BEC.
又MN∩DN=N,
所以平面DMN∥平面BEC.
又DM?平面DMN,
所以DM∥平面BEC.
法二 如圖所示,延長AD,BC交于點F,連接EF.

因為CB=CD,∠BCD=120°,
所以∠CBD=30°.
因為△ABD為正三角形,
所以∠BAD=60°,
∠ABC=90°,
因此∠AFB=30°,
所以AB=AF.
又AB=AD,
所以D為線段AF的中點,
連接DM,由點M是線段AE的中點,
得DM∥EF.
又DM平面BEC,EF?平面BEC,
所以DM∥平面BEC.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,底面

(1)證明:;
(2)若,求二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,平面,底面為矩形,的中點.

(1)求證:;
(2)在線段上是否存在一點,使得平面?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知三棱柱ABCA1B1C1,

(1)若M、N分別是AB,A1C的中點,求證:MN∥平面BCC1B1;
(2)若三棱柱ABCA1B1C1的各棱長均為2,∠B1BA=∠B1BC=60°,P為線段B1B上的動點,當PA+PC最小時,求證:B1B⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知兩個正方形ABCD和DCEF不在同一平面內,M,N分別為AB,DF的中點.

(1)若CD=2,平面ABCD⊥平面DCEF,求MN的長;
(2)用反證法證明:直線ME與BN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中點.如圖②,將△ABE沿AE折起,使二面角BAEC成直二面角,連結BC、BD,F(xiàn)是CD的中點,P是棱BC的中點.求證:

圖①圖②
(1)AE⊥BD;
(2)平面PEF⊥平面AECD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將正方形沿對角線折成直二面角,有如下四個結論:
;②△是等邊三角形;③與平面所成的角為60°;
所成的角為60°.其中錯誤的結論是
A.①B.②C.③D.④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知矩形ABCD,AB=1,BC=,將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中,下列說法正確的是________.(填序號)
①存在某個位置,使得直線AC與直線BD垂直;
②存在某個位置,使得直線AB與直線CD垂直;
③存在某個位置,使得直線AD與直線BC垂直;
④對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

畫一個正方體ABCDA1B1C1D1,再畫出平面ACD1與平面BDC1的交線,并且說明理由.

查看答案和解析>>

同步練習冊答案