已知拋物線C:y2=2px(p>0)過點A(1,-2).
(1)求拋物線C的方程,并求其準線方程.
(2)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓+=1(a>b>0)的左,右焦點分別為F1,F2,點P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設(shè)直線PF2與橢圓相交于A,B兩點.若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點,且|MN|=|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
過橢圓的左頂點作斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經(jīng)過點(,1),O為坐標原點.
(1)求橢圓的方程.
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)A,B分別是直線y=x和y=-x上的動點,且|AB|=,設(shè)O為坐標原點,動點P滿足=+.
(1)求點P的軌跡方程;
(2)過點(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點P的軌跡的相交弦分別為CD,EF,設(shè)CD,EF的弦中點分別為M,N,求證:直線MN恒過一個定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的右焦點為F(1,0),且點(-1,)在橢圓C上.
(1)求橢圓C的標準方程.
(2)已知點Q(,0),動直線l過點F,且直線l與橢圓C交于A,B兩點,證明:·為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標軸平行的直線與橢圓交于兩點,坐標原點到直線的距離為,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com