【題目】已知函數(shù)()在同一半周期內(nèi)的圖象過(guò)點(diǎn), , ,其中為坐標(biāo)原點(diǎn), 為函數(shù)圖象的最高點(diǎn), 為函數(shù)的圖象與軸的正半軸的交點(diǎn), 為等腰直角三角形.
(1)求的值;
(2)將繞原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角,得到,若點(diǎn)恰好落在曲線()上(如圖所示),試判斷點(diǎn)是否也落在曲線()上,并說(shuō)明理由.
【答案】(1)2;(2)見(jiàn)解析.
【解析】試題分析:(1)由已知利用周期公式可求最小正周期,由題意可求Q坐標(biāo)為(4,0).P坐標(biāo)為(2, ),結(jié)合△OPQ為等腰直角三角形,即可得解;
(2)由(Ⅰ)知, , ,可求點(diǎn)P′,Q′的坐標(biāo),由點(diǎn)在曲線,(x>0)上,利用倍角公式,誘導(dǎo)公式可求,又結(jié)合,,可求的值,由于,即可證明點(diǎn)Q′不落在曲線()上.
試題解析:
(1)因?yàn)楹瘮?shù)()的最小正周期,所以函數(shù)的半周期為,
所以,即有坐標(biāo)為,
又因?yàn)?/span>為函數(shù)圖象的最高點(diǎn),所以點(diǎn)的坐標(biāo)為.
又因?yàn)?/span>為等腰直角三角形,所以.
(2)點(diǎn)不落在曲線()上,理由如下:
由(1)知, ,
所以點(diǎn), 的坐標(biāo)分別為, .
因?yàn)辄c(diǎn)在曲線()上,所以,即,又,所以.
又.所以點(diǎn)不落在曲線()上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右頂點(diǎn)為,上頂點(diǎn)為,離心率, 為坐標(biāo)原點(diǎn),圓與直線相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知四邊形內(nèi)接于橢圓.記直線的斜率分別為,試問(wèn)是否為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求的極值;
(2)若有兩個(gè)不同的極值點(diǎn) ,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)試討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn), ,且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技發(fā)展,手機(jī)成了人們?nèi)粘I钪斜夭豢缮俚耐ㄐ殴ぞ,現(xiàn)在的中學(xué)生幾乎都擁有了屬于自己的手機(jī)了.為了調(diào)查某地區(qū)高中生一周使用手機(jī)的頻率,某機(jī)構(gòu)隨機(jī)調(diào)查了該地區(qū)100名高中生某一周使用手機(jī)的時(shí)間(單位:小時(shí)),所取樣本數(shù)據(jù)分組區(qū)間為、、、、、、,由此得到如圖所示的頻率分布直方圖.
(1)求的值并估計(jì)該地區(qū)高中生一周使用手機(jī)時(shí)間的平均值;
(2)從使用手機(jī)時(shí)間在、、、的四組學(xué)生中,用分層抽樣方法抽取13人,則每層各應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知是直角梯形, , , 平面.
(1)證明: ;
(2)若是的中點(diǎn),證明: 平面;
(3)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin 2x-cos2x-,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (m、n為常數(shù),e = 2.718 28…是自然對(duì)數(shù)的底數(shù)),曲線y = f (x)在點(diǎn)(1,f (1))處的切線方程是.
(Ⅰ)求m、n的值;
(Ⅱ)求f (x)的最大值;
(Ⅲ)設(shè) (其中為f (x)的導(dǎo)函數(shù)),證明:對(duì)任意x > 0,都有.
(注: )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com