分析 根據對數的運算法則和對數的換底公式進行化簡求解即可.
解答 解:(1)log93+log927=log9(3×27)=log981=2;
(2)log2$\frac{1}{2}$+${log}_{\frac{1}{2}}$2=log22-1-log22=-1-1=-2;
(3)log2(4+4)=log28=log223=3;
(4)$\frac{lg10000}{lg1000}$=$\frac{lg1{0}^{4}}{lg1{0}^{3}}=\frac{4}{3}$;
(5)${(\frac{1}{3})}^{lo{g}_{3}2}$=${3}^{-lo{g}_{3}2}=({3}^{lo{g}_{3}2})^{-1}={2}^{-1}=\frac{1}{2}$;
(6)lg$\sqrt{\frac{3}{5}}$+$\frac{1}{2}$lg$\frac{5}{3}$=$\frac{1}{2}$lg$\frac{3}{5}$+$\frac{1}{2}$lg$\frac{5}{3}$=$\frac{1}{2}$lg($\frac{3}{5}$×$\frac{5}{3}$)=$\frac{1}{2}$lg1=0;
(7)2log510+log50.25=log5(0.25×100)=log525=2;
(8)log2.56.25+lg$\frac{1}{100}$+ln$\sqrt{e}$+${2}^{1+lo{g}_{2}3}$=log2.52.52+lg10-2+lne${\;}^{\frac{1}{2}}$+$2×{2}^{lo{g}_{2}3}$=2-2+$\frac{1}{2}+2×3$=$\frac{13}{2}$;
(9)lg25+lg2•lg50+(lg2)2=lg52+lg2(lg5+1)+lg22=2lg5+lg2•lg5+lg2+lg22
=2lg5+lg2+lg2(lg5+lg2)=2(lg5+lg2)=2;
(10)(log32+log92)•(log43+log83)
=(log32+$\frac{1}{2}$log32)•($\frac{1}{2}$log23+$\frac{1}{3}$log23)
=${log}_{3}{2}^{\frac{3}{2}}•{log}_{2}{3}^{\frac{5}{6}}$=$\frac{3}{2}×\frac{5}{6}=\frac{5}{4}$.
點評 本題主要考查了對數的運算性質,要注意熟悉掌握對數的運算性質.
科目:高中數學 來源: 題型:選擇題
A. | M=N | B. | N⊆M | C. | M∪N={x|$\frac{x}{20}$∈Z} | D. | M∩N={x|$\frac{x}{40}$∈N*} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com