13.若α∈(0,$\frac{π}{2}$),若cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,則sin(2α+$\frac{π}{6}$)的值為( 。
A.$\frac{{12\sqrt{3}-7}}{25}$B.$\frac{{7\sqrt{3}-24}}{50}$C.$\frac{{24\sqrt{3}-7}}{50}$D.$\frac{{12\sqrt{3}+7}}{25}$

分析 利用同角三角函數(shù)的基本關(guān)系求得sin(α+$\frac{π}{6}$)的值,再利用兩角和差的三角公式求得sinα、cosα的值,從而利用二倍角公式、兩角和差的三角公式求得$sin(2α+\frac{π}{6})$的值.

解答 解:若$α∈(0,\frac{π}{2})$,$cos(α+\frac{π}{6})=\frac{4}{5}$,
∴α+$\frac{π}{6}$還是銳角,故sin(α+$\frac{π}{6}$)=$\sqrt{{1-cos}^{2}(α+\frac{π}{6})}$=$\frac{3}{5}$,
∴sinα=sin[(α+$\frac{π}{6}$)-$\frac{π}{6}$]=sin(α+$\frac{π}{6}$)cos$\frac{π}{6}$-cos(α+$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{3}{5}•\frac{\sqrt{3}}{2}$-$\frac{4}{5}•\frac{1}{2}$=$\frac{3\sqrt{3}-4}{10}$,
∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{\sqrt{57+24\sqrt{3}}}{10}$ 
則$sin(2α+\frac{π}{6})$=sin2αcos$\frac{π}{6}$+cos2αsin$\frac{π}{6}$=2sinαcosαcos$\frac{π}{6}$+(cos2α-sin2α)sin$\frac{π}{6}$
=2•$\frac{3\sqrt{3}-4}{10}$•$\frac{\sqrt{57+24\sqrt{3}}}{10}$•$\frac{\sqrt{3}}{2}$+[$\frac{57+24\sqrt{3}}{100}$-$\frac{{(3\sqrt{3}-4)}^{2}}{100}$]•$\frac{1}{2}$=$\frac{24\sqrt{3}-7}{50}$,
故選:C.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的三角公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對(duì)任意的非零實(shí)數(shù)a,b,若$a?b=\left\{\begin{array}{l}\frac{b-1}{a},a<b\\ \frac{a+1},a≥b\end{array}\right.$則lg10000$?{(\frac{1}{2})^{-2}}$=(  )
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|-2<x<0},B={x|y=$\sqrt{x+1}$}
(1)求(∁RA)∩B;
(2)若集合C={x|a<x<2a+1},且C⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知兩點(diǎn)F1(-6,0)、F2(6,0),點(diǎn)P為橢圓上任意一點(diǎn),|PF1|+|PF2|=20
(1)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
(2)求出橢圓的長(zhǎng)軸的長(zhǎng),短軸長(zhǎng),頂點(diǎn)的坐標(biāo),離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.(log23)×(log32)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x-\frac{1}{x})={x^2}+\frac{1}{x^2}$,則f(3)=( 。
A.11B.9C.10D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}中,a1=1,且a2+a6=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足:$\frac{_{1}}{2}$+$\frac{_{2}}{{2}^{2}}$+$\frac{_{3}}{{2}^{3}}$+…+$\frac{_{n}}{{2}^{n}}$=an+n2+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={x|y=ln(x-1)},集合B={y|y=2x},則A∩B( 。
A.1≤m≤2B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知p(x):x2-5x+6<0,則使p(x)為真命題的x的取值范圍為(2,3).

查看答案和解析>>

同步練習(xí)冊(cè)答案