直四棱柱中,底面為菱形,且延長線上的一點,.設(shè).

(Ⅰ)求二面角的大。
(Ⅱ)在上是否存在一點,使?若存在,求的值;不存在,說明理由.

(1);(2)存在點使此時

解析試題分析:本題主要以直三棱柱為幾何背景考查線線垂直、線面垂直、線面平行和二面角的求法,可以運(yùn)用空間向量法求解,突出考查空間想象能力和計算能力.第一問,第一問,通過對題目的分析建立空間直角坐標(biāo)系,得到點和向量的坐標(biāo),先由線面垂直得出平面的法向量為,再利用,,求出平面的法向量,最后利用夾角公式求出夾角余弦值,通過觀察判斷確定二面角為銳角;第二問,先假設(shè)存在,利用共線向量,得到的關(guān)系,從而得到的坐標(biāo),下面求的坐標(biāo),利用第一問中的的坐標(biāo)計算的坐標(biāo),如果平面,則與平面的法向量垂直,所以,利用這個方程解題,如果有解,則存點,若無解,則不存在點.
試題解析:(Ⅰ)設(shè)交于,如圖所示建立空間直角坐標(biāo)系,
設(shè)

平面
          2分
設(shè)平面的法向量為 
則由   令
平面的一個法向量為
又平面的法向量為
∴二面角大小為           6分

(Ⅱ)設(shè)
   10分

存在點使此時         12分
考點:1.空間向量法;2.線面垂直;3.夾角公式;4.向量垂直的充要條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在四棱錐中, 底面四邊形是直角梯形, ,,.

(1)求證:;
(2)求直線與底面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱中,平面,, ,分別是的中點.

(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。

(Ⅰ)求證:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,,,°,平面平面,、分別為、中點.

(1)求證:∥平面;
(2)求證:;
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在長方體中,,, E、 分別為的中點.

(1)求證:平面;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一點,且CD⊥平面PAB.

(1)求證:AB⊥平面PCB;
(2)求異面直線AP與BC所成角的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,是棱上的一點,的延長線與的延長線的交點,且∥平面。

(1)求證:;
(2)求二面角的平面角的余弦值;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求異面直線B1C1與AC所成角的大;
(2)若該直三棱柱ABC-A1B1C1的體積為,求點A到平面A1BC的距離.

查看答案和解析>>

同步練習(xí)冊答案