(本小題滿分12分)

       已知函數(shù)f(x)=(x∈R).

       ⑴當f(1)=1時,求函數(shù)f(x)的單調(diào)區(qū)間;[來源:Zxxk.Com]

       ⑵設(shè)關(guān)于x的方程f(x)=的兩個實根為x1,x2 ,且-1≤a≤1,求|x1-x2|的最大值;

       ⑶在(2)的條件下,若對于[-1,1]上的任意實數(shù)t,不等式m2+tm+1≥|x1-x2|恒成立,求實數(shù)m的取值范圍.

(1)f(x)的減區(qū)間是(-∞,-2]和[1,+∞),增區(qū)間是[-2,1];(2)3;(3)m≥2或m≤-2


解析:

⑴ 由f(1)=1得a=-1 ,……………………………………………………2分[來源:學+科+網(wǎng)]

       f′(x)===≥0……………………4分

       -2≤x≤1,所以f(x)的減區(qū)間是(-∞,-2]和[1,+∞),增區(qū)間是[-2,1]…5分

       ⑵方程f(x)=可化為x2-ax-2=0,Δ=a2+8 >0

       ∴x2-ax-2=0有兩不同的實根x1,x2,

       則x1+x2=a,x1x2=-2…………………………7分

       ∴ |x1-x2|=

       ∵-1≤a≤1 ,∴當a=±1時,

       ∴|x1-x2max==3…………………………8分

       ⑶若不等式m2+tm+1≥|x1-x2|恒成立,

       由⑵可得m2+tm+1≥3,對t∈[-1,1] 都成立m2+tm-2≥0 ,t∈[-1,1],

       設(shè)g(t)=m2+tm-2…………………………………………9分

       若使t ∈[-1,1]時g(t)≥0都成立,

       則…………11分

       解得:m≥2或m≤-2 ,所以m的取值范圍是m≥2或m≤-2……………………12分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案