已知點(diǎn)E(2,1)和圓O:x2+y2=16,過(guò)點(diǎn)E的直線l被圓O所截得的弦長(zhǎng)為4
3
,則直線l的方程為
 
考點(diǎn):直線與圓相交的性質(zhì)
專(zhuān)題:直線與圓
分析:圓心到直線的距離為
16-(2
3
)
2
=2,再分直線的斜率存在、不存在兩種情況,分別根據(jù)弦心距等于2,利用點(diǎn)到直線的距離公式求得k的值,可得所求的直線方程.
解答: 解:由題意可得圓心到直線的距離為
16-(2
3
)
2
=2,
當(dāng)直線l的斜率不存在時(shí),方程為x=2,
當(dāng)直線l的斜率存在時(shí),設(shè)為k,則直線l的方程為y-1=k(x-2),即 kx-y+1-2k=0.
由弦心距等于2可得
|0-0+1-2k|
k2+1
=2,求得k=-
3
4
,
故要求的直線l的方程為x=2,或3x+4y-10=0,
故答案為:x=2,或3x+4y-10=0.
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,弦長(zhǎng)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O:x2+y2=4與點(diǎn)P(3,4),過(guò)點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下表是銀川九中高二七班數(shù)學(xué)興趣小組調(diào)查研究iphone6購(gòu)買(mǎi)時(shí)間x(月)與再出售時(shí)價(jià)格y(千元)之間的數(shù)據(jù).
x(月)1245
y(千元)7643
(1)畫(huà)出散點(diǎn)圖并求y關(guān)于x的回歸直線方程;
(2)試指出購(gòu)買(mǎi)時(shí)間每增加一個(gè)月(y≤8時(shí)),再出售時(shí)售價(jià)發(fā)生怎樣的變化?
溫馨提示:線性回歸直線方程
y
=bx+a中,
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
.
x
2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、有焦點(diǎn)分別為F1,F(xiàn)2,若在雙曲線的右支上存在一點(diǎn)P,使得|PF1|=3|PF2|,則雙曲線的離心率e的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球2個(gè),標(biāo)號(hào)為2的小球n個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率為
2
5

(Ⅰ)求n的值;
(Ⅱ)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球的標(biāo)號(hào)為a,第二次取出的小球的標(biāo)號(hào)為b.
①記“a+b=2”為事件A,求事件A的概率;
②在區(qū)間[0,4]內(nèi)任取2個(gè)實(shí)數(shù)x,y,記“
x2+y2
>a+b”為事件B,求使事件B恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a3=10且a3,a7,a10成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sinα+cosα=m,則sinαcosα=
 
(用m的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(2-x)ex的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=x2+bx+c.
(1)若拋物線與x軸交于A(-1,0),B(2,0)兩點(diǎn),求關(guān)于x的不等式bx2+x-c>0的解集;
(2)若拋物線過(guò)點(diǎn)A(-1,0),解關(guān)于x不等式x2+bx+c>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案