【題目】已知的三邊長分別是,,.下列說法正確的是(

A.所在直線為旋轉軸,將此三角形旋轉一周,所得旋轉體的側面積為

B.所在直線為旋轉軸,將此三角形旋轉一周,所得旋轉體的體積為

C.所在直線為旋轉軸,將此三角形旋轉一周,所得旋轉體的側面積為

D.所在直線為旋轉軸,將此三角形旋轉一周,所得旋轉體的體積為

【答案】AD

【解析】

所在直線為軸旋轉時,所得旋轉體是圓錐,求出其側面積和體積,可知A正確,B錯誤;以所在直線為軸旋轉時,所得旋轉體是圓錐,求出其側面積和體積,可知故C錯誤,D正確,從而可得答案.

所在直線為軸旋轉時,所得旋轉體是底面半徑為3,母線長為5,高為4的圓錐,其側面積為,體積為,故A正確,B錯誤;

所在直線為軸旋轉時,所得旋轉體是底面半徑為4,母線長為5,高為3的圓錐,側面積為,體積為,故C錯誤,D正確.

故選:AD.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩個同學進行定點投籃游戲,已知他們一次投籃中的概率均為,且各次投籃的結果互不影響.甲同學決定投5次,乙同學決定投中1次就停止,否則就繼續(xù)投下去,但投籃次數(shù)不超過5次.

(1)甲同學至少有4次投中的概率;

(2)乙同學投籃次數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=ex-x2+a,xR,曲線y=fx)在(0,f(0))處的切線方程為y=bx

(1)求fx)的解析式;

(2)當xR時,求證:fx)≥-x2+x

(3)若fx)≥kx對任意的x∈(0,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個人排成一排,在下列情況下,各有多少種不同排法?

1)甲不在兩端;

2)甲、乙、丙三個必須在一起;

3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,不過原點的直線與橢圓交于A、B兩點.

(1)求面積的最大值.

(2)是否存在橢圓,使得對于橢圓的每一條切線與橢圓均相交,設交于A、B兩點,且恰取最大值?若存在,求出該橢圓;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,數(shù)列的前項和為,若對一切,恒有,則能取到的最大整數(shù)是( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調(diào)查,將收集的數(shù)據(jù)分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.

(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?

(2)現(xiàn)按照“課外體育達標”與“課外體育不達標”進行分層抽樣,抽取8人,再從這8名學生中隨機抽取3人參加體育知識問卷調(diào)查,記“課外體育不達標”的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,向量與向量的夾角為,且.

(1)求向量;

(2)設向量,向量,其中,若,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中.

(Ⅰ) 判斷函數(shù)上的單調(diào)性;

(Ⅱ) 設函數(shù)的定義域為,且有極值點.

(ⅰ) 試判斷當時, 是否滿足題目的條件,并說明理由;

(ⅱ) 設函數(shù)的極小值點為,求證: .

查看答案和解析>>

同步練習冊答案