已知數(shù)列{an}的前n項(xiàng)和Sn=2an+1,求證:數(shù)列{an}是等比數(shù)列,并求出通項(xiàng)公式.

答案:
解析:

  證明:∵Sn=2an+1,∴Sn+1=2an+1+1.

  ∴Sn+1-Sn=(2an+1+1)-(2an+1)=2an+1-2an

  ∴an+1=2an 、

  又∵S1=a1=2a1+1,∴a1=-1≠0.

  由①知,an≠0,

  ∴由=2知,數(shù)列{an}是等比數(shù)列,an=-2n-1

  思路解析:要證數(shù)列是等比數(shù)列,關(guān)鍵是看an與an-1之比是否為一常數(shù),由題設(shè)還需利用an=Sn-Sn-1(n≥2)求得an


提示:

  (1)本題證明,關(guān)鍵是用等比數(shù)列的定義,其中說明an≠0是非常重要的.證明中,也可以寫出Sn-1=2an-1+1,從而得到an=2an-1,只能得到n≥2時(shí),{an}是等比數(shù)列,得到n≥2時(shí),an=-2n-1,再將n=1時(shí),a1=-1代入驗(yàn)證.

  (2)證明一個(gè)數(shù)列是等比數(shù)列,常用方法是:①要證明一個(gè)數(shù)列{an}是等比數(shù)列,只要證明對(duì)于任意自然數(shù)n,都等于同一個(gè)常數(shù)即可.②對(duì)于一個(gè)數(shù)列,除了首項(xiàng)和末項(xiàng)(有窮數(shù)列)外,任何一項(xiàng)都是它的前后兩項(xiàng)的等比中項(xiàng),則此數(shù)列是等比數(shù)列.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案