【題目】近年來,我國(guó)電子商務(wù)蓬勃發(fā). 2016年“618”期間,某網(wǎng)購(gòu)平臺(tái)的銷售業(yè)績(jī)高達(dá)516億元人民幣,與此同時(shí),相關(guān)管理部門推出了針對(duì)該網(wǎng)購(gòu)平臺(tái)的商品和服務(wù)的評(píng)價(jià)系統(tǒng). 評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購(gòu)者對(duì)商品的滿意率為0.6,對(duì)服務(wù)的滿意率為0.75,其中對(duì)商品和服務(wù)滿意的交易為80次.

(Ⅰ) 根據(jù)已知條件完成下面列聯(lián)表,并回答能有99%的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)服務(wù)滿意之間有關(guān)系”?

對(duì)服務(wù)滿意

對(duì)服務(wù)不滿意

合計(jì)

對(duì)商品滿意

80

對(duì)商品不滿意

合計(jì)

200

(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購(gòu)平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)滿意的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

附:(其中為樣本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(I)有99%的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)服務(wù)滿意之間有關(guān)系”;(II)詳見解析.

【解析】試題分析:(Ⅰ)由已知列出關(guān)于商品和服務(wù)評(píng)價(jià)的 列聯(lián)表,代入公式求得 的值,對(duì)應(yīng)數(shù)表得答案;
(Ⅱ)每次購(gòu)物時(shí),對(duì)商品和服務(wù)全好評(píng)的概率為0.4,且X的取值可以是0,1,2,3, .求出相應(yīng)的概率,可得對(duì)商品和服務(wù)全好評(píng)的次數(shù)X的分布列(概率用組合數(shù)算式表示);利用二項(xiàng)分布的數(shù)學(xué)期望求X的數(shù)學(xué)期望.

試題解析:

(Ⅰ) 列聯(lián)表:

對(duì)服務(wù)滿意

對(duì)服務(wù)不滿意

合計(jì)

對(duì)商品滿意

80

40

120

對(duì)商品不滿意

70

10

80

合計(jì)

150

50

200

因?yàn)?/span>,

所以有99%的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)服務(wù)滿意之間有關(guān)系”.

(Ⅱ) 每次購(gòu)物時(shí),對(duì)商品和服務(wù)都滿意的概率為,且的取值可以是0,1,2,3.

.

0

1

2

3

的分布列為:

所以.

或者:由于,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,角的對(duì)邊分別為

)若,求面積的最大值;

)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)loga(1x)g(x)loga(1x),(a>0,a1).

(1)設(shè)a2函數(shù)f(x)的定義域?yàn)?/span>[3,63],f(x)的最值;

(2)求使f(x)g(x)>0x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點(diǎn).

(Ⅰ)求曲線的直角坐標(biāo)方程及直線恒過的定點(diǎn)的坐標(biāo);

(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說:“是作品獲得一等獎(jiǎng)”;

乙說:“作品獲得一等獎(jiǎng)”;

丙說:“兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說:“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)若曲線與曲線在點(diǎn)處有相同的切線,試討論函數(shù)的單調(diào)性;

(2)若,函數(shù)上為增函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,建立平面直角坐標(biāo)系xOyx軸在地平面上,y軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程ykx (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).

設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標(biāo)a不超過多少時(shí),炮彈可以擊中它?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費(fèi)支出

1

2

4

6

11

13

19

銷售額

19

32

40

44

52

53

54

1)若用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

2)用二次函數(shù)回歸模型擬合的關(guān)系,可得回歸方程:,

經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的分別約為,請(qǐng)用說明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為3萬元時(shí)的銷售額.

參數(shù)數(shù)據(jù)及公式:,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016高考山東理數(shù)】已知.

I)討論的單調(diào)性;

II)當(dāng)時(shí),證明對(duì)于任意的成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案