【題目】用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為( 。
A.4
B.5
C.6
D.7
【答案】C
【解析】解:10﹣x是減函數(shù),x+2是增函數(shù),2x是增函數(shù),令x+2=10﹣x,x=4,此時,x+2=10﹣x=6,如圖:
y=x+2 與y=2x交點(diǎn)是A、B,y=x+2與 y=10﹣x的交點(diǎn)為C(4,6),
由上圖可知f(x)的圖象如下:
C為最高點(diǎn),而C(4,6),所以最大值為6.
故選:C
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的最值及其幾何意義,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲导纯梢越獯鸫祟}.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c,滿足f(1)=﹣ , 且3a>2c>2b.
(1)求證:a>0時,的取值范圍;
(2)證明函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點(diǎn);
(3)設(shè)x1 , x2是函數(shù)f(x)的兩個零點(diǎn),求|x1﹣x2|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用二分法研究函數(shù)f(x)=x3+3x﹣1的零點(diǎn)時,第一次經(jīng)計算f(0)<0,f(0.5)>0,可得其中一個零點(diǎn)x0∈ ,第二次應(yīng)計算的f(x)的值為f( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機(jī)抽取100位員工進(jìn)行調(diào)查,得到如下的頻率分布直方圖:
(1)試由此圖估計該公司員工的月平均工資;
(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認(rèn)為,工資低于4500。元的員工屬于學(xué)徒階段,沒有營銷經(jīng)驗(yàn),若進(jìn)行營銷將會失敗;高于4500元的員工是具備營銷成熟員工,基進(jìn)行營銷將會成功,F(xiàn)將該樣本按照“學(xué)徒階段工資”、“成熟員工工資”分成兩層,進(jìn)行分層抽樣,從中抽出5人,在這5人中任選2人進(jìn)行營銷活動。活動中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元。試問在此次比賽中公司收入多少萬元的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求證: ;
(2)對任意,存在,使成立,求的取值范圍.(其中是自然對數(shù)的底數(shù), )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)國務(wù)院批復(fù)同意,鄭州成功入圍國家中心城市,某校學(xué)生團(tuán)針對“鄭州的發(fā)展環(huán)境”對20名學(xué)生進(jìn)行問卷調(diào)查打分(滿分100分),得到如圖1所示莖葉圖.
(1)分別計算男生女生打分的平均分,并用數(shù)學(xué)特征評價男女生打分的數(shù)據(jù)分布情況;
(2)如圖2按照打分區(qū)間繪制的直方圖中,求最高矩形的高;
(3)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,若Ω是長方體ABCD﹣A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點(diǎn),F(xiàn)為線段BB1上異于B1的點(diǎn),且EH∥A1D1 , 則下列結(jié)論中不正確的是( 。
A.EH∥FG
B.四邊形EFGH是矩形
C.Ω是棱柱
D.Ω是棱臺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形的兩條對角線相交于點(diǎn), 邊所在的直線的方程為,點(diǎn)在邊所在的直線上.
(1)求邊所在直線的方程;
(2)求矩形外接圓的方程;
(3)過點(diǎn)的直線被矩形的外接圓截得的弦長為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com